Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Debian Project

DebConf 16
Capetown, South Africa, 2016-06-04
1 Starting point

2 Why stop there?

3 Keyring aging: A hypothesis

4 Signature expiration

5 Asymmetric signatures

6 Further ideas

7 As for DC16...
Once upon a time in Portland…

This work dates back to our (keyring-maint’s) presentation in DebConf14

We were pushing to migrate away from short (<2048 bit) keys… but the progress was too slow

Needed to show people how we were stagnating on something widely regarded as urgent

… Numbers speak for themselves

Graphs help us get the point across
Just how deep was our problem?

Figure: The situation as presented in DC14
The rest of the project saw we sorely needed to deprecate short keys.

It was quite hellish for the team.

- 258 key replacements handled throughout less than half a year.

We perceived it as a successful transition. . . Although not exempt of problems.

- 287 keys (35 DMs, 252 DDs) not handled (thus removed).
- 18 months later, 195 DD accounts still have a removed key.
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

How does the void really look like...

Figure: Drop in active DD keys after the <2048 bit removal
Numbers today

<table>
<thead>
<tr>
<th>Role</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian Developer, uploading</td>
<td>816</td>
</tr>
<tr>
<td>Debian Developer, nonuploading</td>
<td>18</td>
</tr>
<tr>
<td>Debian Maintainer</td>
<td>236</td>
</tr>
<tr>
<td>Role keys</td>
<td>6</td>
</tr>
</tbody>
</table>
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...
Learning from our keyring:
What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16…

- Wrote a series of scripts to query+graph several aspects. . .
 Went on querying the data set
- What further measurements can be made to a keyring?
 - Finding the evolution of our strong set WRT the whole keyring
 - Surprise: Mostly stable over the years
 - Even more so discounting the jitter of 2014’s changes
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

Figure: Strong set remains 82-89% of the keyring
Out of curiosity, the shape of the keyring

- Played with giving the keyring to graphviz
 - Might not be the best tool
 - Graph orientation and general shape is not stable
 - ...But the results are interesting nonetheless!
 - Excuse the ugliness when presenting. ... :-P

- Keys are nodes, signatures are edges
- Of course, it looks like a simple, useless blob...
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

Figure: Our WoT — A maze of twisty passages, all alike
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

Figure: It's ALIVE!!!
Given we are in Git, how *did* it look?

- What does this split mean?
- Why did it appear?
- Where does it come from?
- How did it get there?
 - What does that even mean?!
Evolution of the keyring

Figure: Top row: Yearly snapshots, 2010–2015; bottom row: ≈ bimestral snapshots; July 2014–January 2015
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Contents

1. Starting point
2. Why stop there?
3. Keyring aging: A hypothesis
4. Signature expiration
5. Asymmetric signatures
6. Further ideas
7. As for DC16...
Hypothesis: Keyring aging?

- Leading to, and mostly during 2014, a huge portion of our keyring was replaced
 - One of the “blobs” marks older keys, the other new replacements?
 - But why the split began as early as 2011?
 - Note that nodes are grouped by their cross-signatures not by the key age (hence a 1024D key could be in the “younger” group and be expired!)
- Or it marks a generation of DDs, slowly going MIA?
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Graphs are nice, so...

- Colored graphs must be even better!
- Color key:
 - Nodes are irrelevant (point), only edges are important
 - Edges represent key signatures; color denotes signature age
 - WRT the point in time the snapshot was taken
 - Blue: Less than one year
 - Green: 1 to 2 years
 - Yellow: 2 to 3 years
 - Orange: 3 to 4 years
 - Red: over 4 years old
Same two keyrings: 2014.07.28 and 2016.06.19

(a) Big, red, disconnected blob (b) Now, a more even distribution

(keyring at 2014.07.28 (1002 keys:
1660 <1yr 699 <2yr, 1537 <3yr, 2386 <4yr, 7313 older)

(keyring at 2016.06.19 (816 keys:
1501 <1yr 2785 <2yr, 1962 <3yr, 970 <4yr, 5491 older)
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point
Why stop there?
Keyring aging: A hypothesis
Signature expiration
Asymmetric signatures
Further ideas
As for DC16...

Figure: Over the years, the red blob manages to stay apart — until it fades and dies

- Seems to confirm the hypothesis
What comes to my mind

- Key signatures *do not imply friendship or trust*
 - Just trust that a given, identifiable party has control over a key pair
 - But it is an *important measure of trust* in our project
 - The only bit that links our electronic activities to our worldly identity

- ...How long should this trust last?
 - Do you still recognize everybody I have exchanged signatures with in the last decade?
 - Do you still vouch they control said key pair?
 - Do you have any grounds to believe nobody has vulnerabilities to their security?
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...
Looking at an auto-expiring keyring

- If our *curatorial* process were to regard all signatures over five years old as expired, how would the keyring look?
 - Note that is is just *for the sake of the exercise*
 - I’m not suggesting keyring-maint implements this
 - In fact, it’s been outright discarded... But I have the graphs ;-) So let’s play

- Main issues: How many people would *fall off* the strong (or reachable) set were we to discard old signatures
 - Would large *islands* be formed? Or just isolated dots
With/without expiring signatures, mid 2010

Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

(a) Expiring >5yr old

keyring at 2010.06.08, expiring 6691 sigs over 1825 days
(886 keys: 1633 <1yr, 866 <2yr, 1646 <3yr, 1121 <4yr, 5911 older)

(b) Not expiring

keyring at 2010.06.08 (886 keys:
1633 <1yr 866 <2yr, 1646 <3yr, 1121 <4yr, 12602 older)
With/without expiring signatures, mid 2012

(c) Expiring >5yr old

(d) Not expiring
With/without expiring signatures, mid 2014

Learning from our keyring:
What do our PGP keys say about the project?

Gunnar Wolf

Starting point
Why stop there?
Keyring aging: A hypothesis
Signature expiration
Asymmetric signatures
Further ideas
As for DC16...
With/without expiring signatures, today

Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...

(g) Expiring >5yr old

(h) Not expiring

keyring at 2016.06.19, expiring 3921 sigs over 1825 days
(816 keys: 1501 <1yr, 2785 <2yr, 1962 <3yr, 970 <4yr, 1570 older)

keyring at 2016.06.19 (816 keys: 1501 <1yr 2785 <2yr, 1962 <3yr, 970 <4yr, 5491 older)
Suggestion: Expire your signatures?

Remember to do so also in `.caff/gnupghome/gpg.conf`
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

1 Starting point
2 Why stop there?
3 Keyring aging: A hypothesis
4 Signature expiration
5 Asymmetric signatures
6 Further ideas
7 As for DC16...
What would asymmetric signing be?

- Keysigning usually happens in pairs
 - I check your ID, you check mine, we agree to sign
 - ...Does not always happen that way, but mostly
 - What if we casually meet, but I didn’t have a printed key on me? I can still sign yours...

- How often is this so?
 - What could it mean?
Wary of the big, bad KSP

- Earlier DebConfgs: The biggest, baddests KSPs ever
- I personally got a couple of mails in the past:

 1. Hi Gunnar,
 2.
 3. While my key was in the DCn KSP, in the end I didn’t make it. But you still signed my key.
 4.
 5. You know, that’s bad practice and sloppy checking!

- Should this worry us?
Asymmetric signatures on keyring at 2010.06.08 (886 keys, 12600 mutual, 4382 single: 25.80% single)

Figure: Asymmetric signatures in 2010
Asymmetric signatures on keyring at 2012.06.01 (946 keys, 11064 mutual, 4261 single: 27.80% single)

Figure: Asymmetric signatures in 2012
Asymmetric signatures on keyring at 2014.07.28 (1002 keys, 9172 mutual, 3421 single: 27.17% single)

Figure: Asymmetric signatures in 2014
Asymmetric signatures on keyring at 2016.06.19 (816 keys, 8996 mutual, 2897 single: 24.36% single)

Figure: Asymmetric signatures in 2016
Stable trends

- Max: 28.14%
- Average: 26.57%
- Min: 23.64%
Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...
Other ideas to analyze

Exclusively for academic uses! (no policy changes in sight!)

- Algorithms used for signatures
- Number / shape of islands
- Analyze features the keys themselves, rather than whole keyrings
- Playing with the minimum degree of connectedness: Does one signature suffice? Two? Three? How much would the WoT suffer if we had stricter requisites?
- Identifying main hubs. How resilient is the WoT to withstand the loss of a hub?
 - Read: As simple as the replacement of a key
- Whatever ideas we can come up with :)
Learning from our keyring: What do our PGP keys say about the project?

Gunnar Wolf

Starting point

Why stop there?

Keyring aging: A hypothesis

Signature expiration

Asymmetric signatures

Further ideas

As for DC16...
The KSP keyring

Figure: How is our KSP keyring structured?
Getting to your lucky number...

```
$ wget https://people.debian.org/~anibal/ksp-dc16/ksp-dc16.txt
--2016-06-30 23:26:51--
https://people.debian.org/~anibal/ksp-dc16/ksp-dc16.txt
(...) Saving to: ksp-dc16.txt

ksp-dc16.txt
100%[===========================================>]
46.54K 138KB/s in 0.3s

2016-06-30 23:26:52 (138 KB/s) - ksp-dc16.txt saved [47659/47659]

$ sha256sum ksp-dc16.txt
f5a470fa7abd521af677d1a212d3aca2180136b13323261d6e1cc316a1732bf1 ksp-dc16.txt
```
Your lucky number...

f5a4 70fa 7abd 521a f677 d1a2 12d3 aca2
1801 36b1 3323 261d 6e1c c316 a173 2bf1