
24 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 19, 2024

Using the Git Version Control System to Replace
a Learning Management System

Gunnar Wolf , Graduate Student Member, IEEE

Abstract— For several years now, but with special force since
the beginning of the COVID contingency, higher education pro-
fessors have turned to telematic tools that help teachers manage
the work with which their students practice and demonstrate
their progress in class – Tasks, practices, projects, exhibitions
and more. The systems that, over the last two decades, have
been most used for this purpose are called Learning Management
Systems (LMS); The best known is undoubtedly Moodle, but
there are a large number of options for this. Based on the
empirical observation of a rejection by students of the use of these
systems, the authors made the decision to completely replace
their use with that of a version control system widely used for
software development, Git, specifically for teaching students of the
Computer Engineering career, for the Operating Systems course.
This article presents the justification for choosing this platform,
and the evaluation of the experience after eight semesters using it.

Index Terms— Computer applications, learning technologies,
version control, learning management systems.

I. INTRODUCTION

THE experience presented in this work is located within
the teaching of the Operating Systems class of Computer

Engineering, taught at the Faculty of Engineering of the
National Autonomous University of Mexico.

The article begins with a concepts review. The present
Section presents the concepts of Learning Management Sys-
tems (LMS) as well as Version Control Systems (VCSs).
Naturally, in the last 30 years, several experiences of using
VCSs as part of the workflow of school groups have been
documented; Section II documents related works, succinctly
contrasting their contributions or differences with the model
reported by this work. Section III describes the operation,
approach and basic interaction of students with the VCSs.
In order to validate the experience as useful or successful in
the eyes of the students, a survey was carried out in November
2020, which was answered by 13% of the students. Section IV
presents the results of said survey. Finally, Section V presents

Manuscript received 21 June 2022; revised 9 August 2023; accepted
2 October 2023. Date of publication 20 February 2024; date of current version
26 March 2024.

This work involved human subjects or animals in its research. The author
confirms that all human/animal subject research procedures and protocols are
exempt from review board approval.

The author is with Facultad de Ingeniería (FI) and Instituto de
Investigaciones Económicas (IIEc), Universidad Nacional Autónoma de
México (UNAM), Coyoacán, Ciudad de México 04510, Mexico (e-mail:
gwolf@iiec.unam.mx).

A Spanish version of this article is available as supplementary material at
https://doi.org/10.1109/RITA.2024.3368293.

Digital Object Identifier 10.1109/RITA.2024.3368293

general conclusions about the reported experience and outlines
possible future paths to delve deeper into it.

A. Background: Learning Management Systems (LMS)
Distance learning tools, be they aimed at allowing students

to learn at the pace and schedule of their choice, or to deliver
teaching to places lacking coverage by a given educational sys-
tem, are neither a new idea nor a recent development. Before
the development of information technologies and global data
networks, various learning centers emerged around the world
with varied responses; An example of this is correspondence
courses or telesecundarias [1].

With the massification of Internet access in the 1990s,
various systems emerged that, using the Internet, allowed
the distribution of educational materials to students following
the rhythm and logic of the course, while also allowing
them to use the same medium bidirectionally – offering
forums to express their doubts, delivery places for assign-
ments and exams. Although this began by adapting simple
Content Management Systems (CMS), the possibility of man-
aging administrative aspects of the course (defining courses,
enrolling students, registering teachers, defining relationships
between them, keeping progress reports and grades), as well as
the development of modules for specific interactions with the
educational environment, defined specialized systems called
Learning Management Systems [2].

Given the facilities they provide to teachers, the adoption
of LMSes soon exceeded the original approach of being used
for distance or mixed education, to become a common tool
also for traditional classroom teaching. An LMS can inform
students of new assignments or notify them when their work is
due. It provides the teacher with a single point of management
for digital submissions, replacing the traditional suitcase full
of papers to grade. It allows the teacher to design quizzes and
exams that students can answer, even outside of class hours –
and even allows these exams to be graded automatically,
resulting in significant time savings for the teacher [3].

B. Background: Technological Framework for VCSs
Software development, at any serious scale, has always

required the coordination of efforts between developers, and
it results natural to expect that tools for this purpose have
been developed very early in the history of computing. The
development model followed until the 1960s was very differ-
ent, but as the interactive use of computers became popular
through time shared systems and interactive terminals, this

1932-8540 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6829-1906

WOLF: USING THE Git VERSION CONTROL SYSTEM TO REPLACE A LEARNING MANAGEMENT SYSTEM 25

need became apparent. The first document found that covers
VCSs mentions:

Because sccs represented such a radical departure
from conventional methods for controlling source
code, it became clear when we began development
of it (in late 1972) that a paper specification would
not be sufficient to “sell” the system to the software
projects to which it was intended; we would have to
have a working prototype. [4]

As the authors assumed, it took several years for the idea
to gain the traction needed to become common in software
project development; By the middle of the following decade,
the main tools for this purpose were sccs and RCS [5];
towards the end of the eighties, and motivated due to the
three participants in a project had incompatible schedules, CVS
was developed. It was initially a set of helper functions on
RCS, which facilitated parallel development without explicit
coordination [6]. Several years later, it becomes clear: “one
way to predict whether a software project will be successful
is to ask, do its developers use a version control system to
coordinate their work?” [7]

The large free software projects started in the early 1990s
(particularly the Linux, FreeBSD, NetBSD and OpenBSD
operating systems, and a large number of applications) began
their development using CVS as a nodal point. It is worth
mentioning that, in addition to technical development projects,
those mentioned here share a socio-ideological factor: the
ideological movement of free software seeks the creation of
a body of software that does not impose on its users and
potential developers the limitations derived from copyright,
and very particularly, that allows source code reappropriation,
modification and redistribution [8].

The 1990s witnessed rapid growth both in free software
projects and in the computing equipment’s capabilities,
as well as in and the universality of network access (it can
be argued that the first was due to the conjunction of the first
two). The CVS usage model began to prove insufficient; CVS
lacked the ability to represent actions as common as deleting
or renaming a file, and imposed a high cost when working
with non-plain text files.

Subversion was developed between 2000 and 2004; this
system followed the same interaction model of CVS, correcting
these and other weaknesses [9]. Subversion grew in a few
years and became one of the main development tools in the
free software field.

However, all VCSs mentioned up to this point operate
centrally. With the growth of some projects to development
scales unimaginable until then (8,000 developers in 20 years,
15 million lines of code and more than 37,000 files [10]),
in 2002 Linus Torvalds made the controversial decision to
leave CVS and adopt a distributed VCS (DVCSs): a system in
which there was no single primary copy or central server, but
rather, each copy of the project stored the full history and state,
allowing synchronization between related branches. However,
since there was no VCS that met the postulates of free software
and implemented the distributed model, Torvalds made the
pragmatic and controversial decision to adopt BitKeeper.

Although politically the adoption of BitKeeper was difficult
and a recurring friction point with software freedom purists,
there is no doubt that it helped tremendously to regain speed
in the Linux project development, which had been suffering
for several years [11]. BitKeeper offered a free (as in beer,
not as in freedom, would be often repeated) license to free
software developers, as long as it was not used to compete
with BitKeeper itself.

By 2005, an argument arose over whether the functionality
Andrew Tridgell was adding to Linux was a license viola-
tion [12], which eventually led to Torvalds himself initiating
development of an DVCS, which he called Git.

In the same period of time, several other free DVCSs
were developed, such as Monotone, Darcs, Mercurial or
Bazaar. There are also other proprietary alternatives, such
as Microsoft’s Team Foundation Server. However, Git has
been a clear winner over the others, and today it can be seen
as lingua franca, not only among free software developers,
but in the world of programming in general; it has brought
together not only a clear majority of projects among the
competing DVCSs, but has managed to attract a large number
of projects that even had more than twenty years of history
on centralized VCSs [13].

In parallel to what has already been presented, since the
late nineties, various forges appeared: websites dedicated to
hosting free software projects, to which they provided man-
aged resources, such as a Web space, bug tracker, mailing
lists – and an SCV. According to the information available
on the first and at some point best known of said forges,
SourceForge, it currently hosts more than 500,000 projects and
has “several million” registered users. However, the interaction
flow on which it is based is not very friendly, which makes it
suitable only for users who are already software development
professionals.

In 2008, and already seeing rapid growth in the adoption
of Git for projects of all sizes, GitHub was born: a forge
with a simplified workflow, and strongly focused on the Git
development model. Just three years later it was already the
most active forge in the world of free software [14]. As of the
date of this writing, according to the information available on
the website, it hosts more than 100 million projects and more
than 50 million developers.

Now, although GitHub has become nodal for the develop-
ment of this impressive number of free projects, it causes a
certain cognitive dissonance that GitHub itself is not free:
the software with which the website operates, and which
integrates the different tools that make it up, is proprietary.
There are other comparable services, such as GitLab, which
even offers a collaboration model and semantics perfectly
mappable against that of GitHub. It would be more consistent
with the author’s personal principles of use and promotion
of free software with which the project that our text reports
began to develop the experience described below on GitLab
or some similar platform; The decision to do so on GitHub
was not taken lightly, and focuses on the importance that this
site has for software development in general. Today, virtually
all free development projects are hosted on GitHub (whether

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

26 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 19, 2024

it is for providing their main development space, or is chosen
as backup or convenience storage).

C. About This Document

The work here presented is a re-elaboration and update of a
very preliminary version, presented in the 2017 Free Software
and Education On-line Encounter (EDUSOL), published in
full [15]; the main additions since that version was published
are:

• The study is carried out over a much larger period.
• A much deeper review of related works.
• Ellaboration and report of a survey on students, validating

several of the presented aspects.

II. RELATED WORK

The use of VCSs as a mechanism for the delivery of
coursework is not a new idea. Experience reports can be found
as early as in 1989 [16], although in said work, the teacher was
unable to complete the implementation due to the students’
difficulties in understanding the system. Quoting the author,

The students were supplied with the machine-
readable copy of the source code contained within a
revision control system. To the disappointment of the
instructors, the revision control system was not used,
and greater emphasis will be given to the benefits of
such a system in future workshops.

Regrettably, it was not possible to locate information regard-
ing later experiences regarding this early experience.

Several works report experiences in the same general lines
as ours, although understandably, starting from different tools,
according to the point in time in which they were presented: In
all cases, they refer to centralized VCSs [7], [17] [18]. After
several years of not finding literature on the matter, a much
closer reference to the work presented here can be found in
Glassey’s text [19].

It is important to emphasize that VCSs do not cover all
of the functionality that LMSs present. The experience that
this article seeks to show focuses on the component for
communicating instructions from the teacher to the students
and deliverables in the inverse direction; It does not consider
roles such as supervisors, tutors and administrators, nor does
it intend to cover functionality such as feedback forums,
feedback tools, educational content modules, nor other com-
munication mechanisms, etc. [20, Section 2.1]

A. Coursework Employing Centralized VCSs

Almost all of the experiences reviewed presented the use
of a VCS following a model of an independent repository
per student. This is antithetical to the expected use of the
implementation to work with collaborative development: If
each of the students has an independent repository, how are
group work submissions managed? Should each team member
send the same submission separately to the teacher? Does only
one of them commit the deliverable, notifying the professor
out of band where to look for the work? When discussing
this point, Reid and Wilson even mention an important point

that is considered central to the discussion [7]: “preventing
students from seeing each other’s work.” Collaborative devel-
opment systems are, then, presented in a rather adversarial
environment, working against the natural collaboration that
they should implement.

Milentijevic’s implementation presents an experience built
on a technological foundation of Subversion or CVS, but
necessarily mediated by a Web interface [18]. A single repos-
itory is not managed throughout the course, but progresses by
separating each delivery: throughout the course, a new repos-
itory is generated for each task or project; each student must
obtain the repository. The deliverables, the authors explain,
include the life cycle of each of these developments: Definition
and assignment of tasks, work on the task, completion and
evaluation. Each of these stages requires a different type
of interaction between supervisor and students, involving a
nontrivial amount of bureaucratic work (covered by the Web
system) for the model presented.

Glassy’s proposal contrasts with the previous two, given that
their methodology does not seek the use of a VCS as a mecha-
nism for the delivery of tasks and projects, but rather as a tool
to evaluate the development practices of their students [17].
Each student creates their Subversion repository, performs the
work, and submits by email to the entire repository. Glassy
analyzes the patterns of commits (committed change sets) that
are part of the repository, and documents patterns not too
different from those that will be presented in Figure 2.

B. Coursework Employing Distributed VCSs

Glassy’s Related Work section refers to a course at the
author’s university (Montana Tech) in spring 2005, based on
Darcs [17]. This would be the first case of a course on a DVCS,
and the experience would be very interesting to analyze, but
it was not possible to find more information about it.

GitHub operates a community called GitHub Education
Community, dedicated to the generation of contact between
teachers and students and discussion of the use of DVCS
technology for educational purposes. It also offers organi-
zational help for Git repositories, through organizations that
operate GitHub Rooms; The flow presented is specific to the
proposed configuration and does not reflect collaborative work
in a professional space. Each student works and makes their
deliveries in their own repository. GitHub Classrooms was
originally developed as free software, but was converted to
an internal and closed GitHub project in early 2020 [21].

Glassey publishes a comparison of tools to control groups,
focusing on courses implemented on Git that use GitHub, but
is rather focused on the tools developed by different teachers
to facilitate the monitoring of deliveries by students [19]. The
work presented here does not have or require external tools
for this purpose – although it has only been used with medium
groups (up to 40 students), it is the author’s opinion that,
by far, the greatest burden in time for the teacher is grading
of delivered projects, not tracking whether the projects have
already been delivered or not.

A particularly relevant part of Glassey’s article is the
comparison between the distribution models of the differ-
ent systems: Seven of the eight flows he reviews distribute

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

WOLF: USING THE Git VERSION CONTROL SYSTEM TO REPLACE A LEARNING MANAGEMENT SYSTEM 27

assignments to students following the model he calls ORpSpA
(One Repository per Student per Assignment), and the remain-
ing, OBpP (One Branch per Problem). The implementation
reviewed here is independent and novel with respect to all the
cases in Glassey’s review.

III. IMPLEMENTATION

Our Engineering Faculty offers several LMS system facil-
ities, particularly the cluster named EducaFI, which has a
Moodle for each of the Faculty’s divisions, managed by the
Academic Computing Services Unit (UNICA).

The teaching experience this work reports begins in January
2013 with the 2013-2 semester. From our first course, a deci-
sion was made to use EducaFI as a partial tool for delivering
assignments and for relaying related bibliography and other
activities that were being covered to the students; The use of
Moodle as an LMS was relatively limited, with only two exer-
cises carried out from questionnaires developed with assigned
qualification, and without using any additional modules.

In general, the administration by the group of interns at
User Service at UNICA is good and agile, but limited to
its operating policies; in particular, we requested the courses
already taught to be preserved as a memory, in order to be
able to compare progress with subsequent experiences. Due
to their inability to comply with this, and due to occasional
problems of some students with problems managing their
accounts, the decision was made to migrate the LMS to
another instance of Moodle, managed by this text’s writer,
and located at a research institute of the same university.
It was then considered to add some modules that would be
useful for the course, such as GeSHi for the presentation of
code fragments or the Virtual Programming Lab (VPL) to
offer a development environment where students could solve
programming approaches without depending on a specific
environment; It is necessary to recognize that this remained
a mere intention due to the time required to know and take
advantage of the Moodle environment beyond casual use.

Towards the end of the 2016-2 semester, the decision was
made to, instead of seeking to offer students tools that simulate
those that students will find in a realistic software development
environment, lead them to actually use them, leading to
the adoption of Git. After evaluating the points presented
in Subsection I-B, in preparation for the 2017-1 semester,
a Git repository called clase-sistop-2017-01 was prepared,
hosted in the teacher’s personal space at GitHub, at the
https://github.com/gwolf/clase-sistop-2017-01 URL. In later
iterations, the URL was simplified to help students find it,
and starting with the 2020-1 semester, they were located in
the Engineering Faculty organizational space, as can be seen
in Table I:

Regarding the internal structure that was given to the
repository, at first, it only contemplated three directories of the
repository for student submissions (homework, practices and
projects), with each of the deliveries located in a numbered
subdirectory within these. Shortly after, a directory for presen-
tations was added to this, which although they follow different
logic for their delivery, can be framed in the general workflow.
Before long, it became obvious that the Git repository was also

TABLE I
URLS FOR EACH OF THE SEMESTERS’ REPOSITORIES

Fig. 1. Example of delivery directory for the first semester where this
methodology was applied. note that several students named their files using
pseudonyms, not their real names, which made assigning grades correctly
difficult.

an ideal medium for transmitting content to students – code
snippets written as in-class examples, references to websites
or other resources mentioned, etc.

When presenting our work scheme, in practice 1, students
are explained under what assumptions deliveries are structured
in the way they are, through the following approach:

“The course repository is a development project to
which you are interested in contributing. When the
teacher generates a new activity, an important defect
naturally “appears” (a bug, in software development
terms): your participation is not registered for that
activity. What you need to do is provide a patch for
that defect. To do so, update your local copy of the
project, develop the steps to correct the bug, and
send it to the teacher so that he can incorporate it
into the main project through a pull request.”

The first semester where Git was used, no naming standard
was requested from students for their deliveries, so naturally
it became complicated to track the relation between files and
the student to which it belonged; this can be appreciated in
some of the directories shown in Figure 1.

In addition to this change, the structure of the repositories
used over the different semesters has remained basically
unchanged.

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

28 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 19, 2024

Given that, in general, students are not familiar with Git at
the beginning of the course (nor with any other VCS), it was
considered necessary to introduce its basic operation through
three practices; we explain to students that, for grading pur-
poses, although the submission of assignments is mandatory
(a student who does not submit all assignments loses the right
to exemption, and a student who does not submit 80% of
assignments loses the right to present the final exam in the
first round), practices are optional, and their only effect is to
improve their final grade.

The practices related to the use of Git that are carried out
as part of the course are:

1) Using Git and GitHub: It consists of eight steps, with
complete and detailed, tutorial-style instructions. We ask
the student to create an account in GitHub if they do
not have one, to make a fork of the main repository
(this is, to copy it into their personal space, where they
have modification permissions), clone it to their personal
computer, generate a file with their name within the
delivery directory of said practice, send it to their fork in
GitHub, and notify the teacher of their changes through
a pull request (request to incorporate the changes of a
fork in the main branch).

2) Parallel development branches: A central feature of
Git’s success is that it makes it easy to work on dif-
ferent aspects very efficiently: By using topic branches,
a developer can be working on different features inde-
pendently. The management of branches allows students
to begin early to develop their projects and presentations
(activities that are intended to be distributed over time)
without this preventing them from making minor deliv-
eries, such as other practices or homework.

3) Deleting unnecessary files: An important provision of
all VCSs is the ability to ignore auto-generated files
resulting from the compilation or execution of a pro-
gram. This practice is included to prevent students from
getting confused with the changes in these files, and
to guide them towards good practices of collaborative
development.

In our experiences so far with Git management, class time
has also been devoted to explaining the model; although
precise measurements were not made, the total time spent is
estimated at less than two and a half hours - approximately
one class session over the course of the semester. Figure 2
illustrates a snapshot of one of the repositories showing how
each student diverges from the main branch of the repository
to prepare their submissions, and how these are incorporated
back into the main branch; we do invite you to use the
public and interactive version of said graph to explore it
and better understand the various events it records, from the
addresses presented in the I Table, by clicking on Insights →

Network.
Besides the three practices mentioned above and of the

explanation made in class, there is nothing in particular
characterizing the students’ usage of Git as classroom-specific:
Students perform exactly the same tasks they would in a non-
academic project.

Fig. 2. Network graph for the interaction between repositories for the 2017-1
repository. Each dot represents a commit. Some patterns can be observed,
indicating deadlines for handing over assignments (days 15-16), announcing
a new task to be carried out (day 17), students handling parallel development
lines (forking of the blue line around day #10, forking of the yellow line at
day 17). Lines towards the bottom represent students that have left some work
pending; as they have not yet sent a pull request or not having complied with
the requested changes in any of them.

TABLE II
COMMITS IN EACH OF THE REPOSITORIES, REPORTED BY SEMESTER

IV. RESULTS

Git is not an LMS, nor this work seeks to present its appli-
cability in a generic way as if it were. The experience reported
here is necessarily limited to the presented scenario: a course
oriented to software development, and a personal commitment
of the teacher to train students in the use of collaborative
development tools that will most likely be valuable for their
professional performance.

The delivery unit in Git is the commit: When a user
determines that the changes they made constitute a milestone,
they group them under a commit; the term means that the user
commits or that acquires a commitment to a set of changes as a
coherent unit. To submit an object (practice, assignment, etc.),
a student must make an absolute minimum of one commit,
after which he or she notifies the teacher via a pull request; The
teacher makes a second commit for each of them, incorporating
it to the main branch.

Table II shows some data regarding the commits made in
the repositories of the seven semesters reported in this work.
The “Students” column indicates the total number of students
enrolled in the course. CT ot indicates the total of commits that
the repository received, of which CStdt indicates how many
were made by the students, and CT ch how many were made by
the teacher. The last two columns present the average number
of commits made by each of the students and the percentage
of total commits that were made by the students.

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

WOLF: USING THE Git VERSION CONTROL SYSTEM TO REPLACE A LEARNING MANAGEMENT SYSTEM 29

TABLE III
PARTICIPATION IN THE SURVEY

We can expecte the total number of commits per student to
vary depending on the total number of submissions requested;
in most cases, commits per student varies between 12 and 20.
However, given that the total number of submissions required
from students has remained between 9 and 11, the 2017-2
and 2018-2 semesters draws attention for having an average
of commits per student close to half of what was observed in
other semesters, and the 2020-1 semester for being close to
double.

Regarding the first two cases, when explaining the way of
working in Git, students were invited to make several commits
in the development process of each of their deliveries, as would
be done with a real development project. Students, however,
tend to make commits only, since they see no motivation to do
so throughout development. This is why, in the most elaborate
project deliveries, completing more than five commits has been
included as a criteria for grading; this can be shown to have
measurably increased the total activity per student.

Regarding 2020-1, its high value is due to the fact that the
course was taken by two students who already had experience
using VCSs: One of them made 194 commits and the other
152, strongly raising the group average.

Regarding the students’ appreciation on the usefulness of
the knowledge acquired with the use of Git, although the
experience had already been successful from the subjective
point of view of the teacher and in informal conversations
with some students, to be certain in this regard, an anonymous
survey was applied to former students who took the course
between semesters 2017-2 and to 2020-2; it was not sent to
the first group to use Git (2017-1) as their email addresses
were not gathered. The survey was generated on the free
online platform QuestionPro. Participation in the survey was
sought by sending a single email to the 224 students who
were part of one of the groups in question. The survey
was kept open for completion for a week during the month
of November 2020, and 30 of the students submitted their
responses. The distribution of responses over the groups is
presented in Table III.

The survey consists of two multiple-choice questions, one
single-choice question, five Likert scale questions, and two
open-ended text questions. They were presented to the students
divided into three groups: 1. Before the course, questions
focused on knowing from which base points they arrived at the
course; 2. During the course, how was their relationship with
Git throughout the semester, and 3. After the course, how do
they feel that learning Git has turned out for them after taking
the course.

Fig. 3. During which semester did you take this course?

Fig. 4. Did you know anything about Git before taking this course?

The questions asked to the students were written in an
informal and fun way, seeking to connect with them and
achieve a higher response rate than what was estimated could
be obtained with a traditional Likert scale, orienting the
questions to a range of values of “very much in disagree”
to “strongly agree”.

A. Before the Course

Several students have taken this course more than once,
which is why the first question is presented as multiple choice:
During which semester did you take the Operating Systems
course? (see Figure 3) The 30 attendees indicated 35 semestral
participations, indicating that five among them were repaters.

We also asked the students how familiar they were with Git
before taking the course; the results are presented in Figure 4.

It can be seen that, although a majority of students already
knew something about Git, their familiarity was low: only 26%
of the respondents had actively used it.

B. During the Course

The questions in this section were presented on a five-point
Likert scale. The usual text of the Likert scale was replaced by
semantic equivalents to facilitate the approach to the students.

As described above, basic handling of Git comes from only
three practices. Is this enough of an introduction to know
enough about the tool to use throughout the semester? Figure 5
shows that, indeed, the students considered it sufficient.

Having an explanation suffice does not necessarily mean the
result of a tool results natural. Figure 6 shows that, while 16%
considered it hard or very hard to use the tool, the majoritary
opinion is still clearly positive.

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

30 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 19, 2024

Fig. 5. Do you think the three practices on Git, plus the in-class explanations,
were sufficient?

Fig. 6. Do you remember how hard it was to deliver your assignments and
coordinate with your team partners?

Fig. 7. How did using Git seem to you, in contrast with using a traditional
LMS such as Moodle?

How does the use of Git answer to the original motivation of
presenting an alternative to Moodle or other LMSs? Figure 7
shows the students resulted, in general, very satisfied with the
change.

Using Git is only a part (albeit a fundamental one) of the
experience. This experience was presented following the usual
terminology and interaction found in the GitHub platform. All
of the students but one indicated they were able to understand
GitHub’s interaction model, and most of hem see value in its
future use, as illustrated in Figure 8.

The last question in this section is open text, and it asks stu-
dents to mention use cases or characteristics they would have
wished to have covered. While some do mention characteris-
tics that were not considered, such as issues, stashes, conflict
resolution while merging changesets or others, the general
feeling is of satisfaction with the level reached throughout the
coursework.

Fig. 8. It’s not only Git: We used this system through the interaction
with the GitHub web site. Did you think the workflow to be clear, with
several branches, clones for managing students, pull requests, pushes and
other actions?

Fig. 9. Do you feel that learning about Git usage better enables you for your
professional life?

Fig. 10. Have you used Git again? Where?

C. After the Course

The teaching-learning process, however, must be evaluated
against the long-term results for the students: How useful was
the acquired knowledge to them? For this, a last question
presented with a Likert scheme allows us to reach the closing
of this tool adoption report with broad optimism: As Figure 9
shows, all students see value in it for their lives professional,
70% of them stating that is/will be a daily-use tool.

In the time elapsed between taking the course and when
the survey was presented, have the students used Git? If so,
where? This question does not follow a Likert-style scheme,
but rather presents five possibilities, allowing for multiple
choice. As 10 shows, 37% of the participants have used Git
for their own (personal) projects, and 27% for other courses
in their curricula.

Closing the survey, a final open question is given asking for
additional comments. The feeling is overwhelmingly positive,
with only three students mentioning the difficulty that the tool
presented to them at the time; I’m taking the allowance to
quote one of them:

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

WOLF: USING THE Git VERSION CONTROL SYSTEM TO REPLACE A LEARNING MANAGEMENT SYSTEM 31

Ha ha, it’s funny because I hated it during the course,
because I didn’t really understand much; however,
once I got the hang of it, I became immensely fond
of it and now we are inseparable; I’m not yet a
primary, but I can defend myself. In fact, in my
current job it was not used and I was the one who
proposed it, and I practically trained my colleagues
to learn how to use it, so in short, I am glad to
have had an approach before where I could make a
mistake and was explained where the issues I faced
were.

These words sum up perfectly the overall intention of
the teacher when presenting the use of Git: To provide an
intellectual challenge that makes the students better suited for
their professional life.

D. Threats to Validity

The author acknowledges that the experience report here
presented is merely and precisely that: a single experience.
In reading the text, it can be seen that the adoption of the
interaction model does not derive from a rigorous approach
to improving educational practices, but from an informal
reflection. The approach was not made in the dark; particularly
the architecture proposed by GitHub Classrooms [21] was
considered, and fellow teachers were consulted looking for
the best ideas and practices, but a full review of related
works detailed in Section II was a consequence, rather than
preparation, of the work done.

Although the total number of students who participated in
the courses that used Git is not low (224 by the time this
work was written), the fact that this work was not the result
of planning from its onset caused the total number of students
who responded to the survey to be barely 30. – and we cannot
rule out that the application of the survey with up to three years
of delay compared to the initial completion has introduced a
bias in its results.

V. CONCLUSION

After an experience with eight semesters reported in this
work, we believe it can be stated this experience has resulted
clearly successful. Using Git has not been, as it has already
been said, natural and clear for students of any discipline, but
at least for intermediate and advanced courses of Computer
Engineering, we invite teachers to adopt and improve upon
the approaches here reported.

A. Future Work

In important part of the importance of the adoption
of DVCSs lies in the collaboration between developers;
particularly, DVCSs have been instrumental in facilitating
collaboration in projects with high geographic dispersion.
We consider it could be beneficial to add practices requiring
two or more students to collaborate in the development of
a given solution, each with their user, and deliver a practice
combining their work. Although this has been spontaneously
observed in the case of teamwork, it is not a skill that every

student has developed. A practice following these lines has not
been developed as we consider it to be unnecessarily complex
for the coursework, but it would undoubtely help better present
Git as a collaboration tool.

Managing submissions requires a nontrivial time commit-
ment on the part of the teacher, particularly in ensuring
that student submissions are made following the required
naming convention. The development of hooks (self-running
validators) to simplify this for the teacher has been considered,
but they have not been implemented due to the potential
they have to confuse the student with unexpected error
messages.

ACKNOWLEDGMENT

The author would like to thank Laboratorio de Investi-
gación y Desarrollo en Software Libre (LIDSOL), Facultad
de Ingeniería, UNAM, for their help and support for this
project.

REFERENCES

[1] Z. Navarrete-Cazales and P. A. López Hernández, “La telesecundaria en
México,” Perfiles Educativos, vol. 44, no. 178, pp. 63–78, Oct. 2022,
doi: 10.22201/iisue.24486167e.2022.178.60673.

[2] F. J. García-Peñalvo, “Estado actual de los sistemas e-learning,” Educ.
Knowl. Soc., vol. 6, no. 2, pp. 1–7, Jan. 2022, doi: 10.14201/eks.18184.

[3] N. A. Alias and A. M. Zainuddin, “Innovation for better
teaching and learning: Adopting the learning management
system,” Malaysian Online J. Instructional Technol., vol. 2, no. 2,
pp. 27–40, 2005. [Online]. Available: https://citeseerx.ist.psu.edu/docu
ment?repid=rep1&type=pdf&doi=d5f63457fb7c53eb83bd2149d860753
c3ebca662

[4] M. J. Rochkind, “The source code control system,” IEEE Trans. Softw.
Eng., vol. SE-1, no. 4, pp. 364–370, Dec. 1975. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6312866

[5] W. F. Tichy, “RCS—A system for version control,” Softw., Pract.
Exper., vol. 15, no. 7, pp. 637–654, 1985, doi: 10.1002/spe.
4380150703.

[6] B. Berliner, “CVS II: Parallelizing software development,” in Proc.
USENIX Winter Tech. Conf., vol. 341, 1990, p. 352. [Online]. Available:
https://www.tiffe.de/Robotron/PDP-VAX/rtVAX300/NetBSD6.0/usr/
src/external/gpl2/xcvs/dist/doc/cvs-paper.pdf

[7] K. L. Reid and G. V. Wilson, “Learning by doing: Introducing ver-
sion control as a way to manage student assignments,” in Proc.
36th SIGCSE Tech. Symp. Comput. Sci. Educ. New York, NY, USA:
ACM, Feb. 2005, vol. 37, no. 1, pp. 272–276. [Online]. Available:
https://dl.acm.org/citation.cfm?id=1047441

[8] S. Williams, Free as in Freedom: Richard Stallman’s Crusade for Free
Software. Sebastopol, CA, USA: O’Reilly Media, 2011.

[9] C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrick, Version
Control With Subversion: Next Generation Open Source Version Control.
Sebastopol, CA, USA: O’Reilly Media, 2008.

[10] J. Brockmeier. Counting Contributions: Who Wrote Linux 3.2.
Accessed: Jun. 14, 2019. [Online]. Available: https://www.linux.com/
learn/counting-contributions-who-wrote-linux-32

[11] V. Henson and J. Garzik, “Bitkeeper for kernel developers,” in
Proc. Ottawa Linux Symp., 2002, pp. 197–212. [Online]. Avail-
able: http://courses.cs.vt.edu/cs5204/fall05-gback/papers/ols2002_proce
edings.pdf#page=197

[12] J. Barr. (2005). Bitkeeper and Linux: The End of the Road. [Online].
Available: https://www.linux.com/news/bitkeeper-and-linux-end-road

[13] B. de Alwis and J. Sillito, “Why are software projects moving
from centralized to decentralized version control systems?” in Proc.
ICSE Workshop Cooperat. Human Aspects Softw. Eng., May 2009,
pp. 36–39.

[14] K. Finley. (Jun. 2011). GitHub Has Surpassed Sourceforge and Google
Code in Popularity. [Online]. Available: https://readwrite.com/github-
has-passed-sourceforge/

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.22201/iisue.24486167e.2022.178.60673
http://dx.doi.org/10.14201/eks.18184
http://dx.doi.org/10.1002/spe.4380150703
http://dx.doi.org/10.1002/spe.4380150703

32 IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE, VOL. 19, 2024

[15] G. Wolf, “De Moodle a Git: Experiencia con el uso de un sistema de con-
trol de versiones (SCV) para reemplazar a un sistema de administración
de la enseñanza (LMS),” in Prácticas Abiertas (Educación y Cultura
Libre), A. Miranda, Ed. Tlalnepantla, Mexico: UNAM’s Facultad de
Estudios Superiores Iztacala (FES Iztacala), 2019, pp. 92–108. [Online].
Available: http://ru.iiec.unam.mx/4574/

[16] B. J. Cornelius, M. Munro, and D. J. Robson, “An approach to software
maintenance education,” Softw. Eng. J., vol. 4, no. 4, pp. 233–236, 1989.

[17] L. Glassy, “Using version control to observe student software develop-
ment processes,” J. Comput. Sci. Colleges, vol. 21, no. 3, pp. 99–106,
2006. [Online]. Available: https://dl.acm.org/citation.cfm?id=1089195

[18] I. Milentijevic, V. Ciric, and O. Vojinovic, “Version control in
project-based learning,” Comput. Educ., vol. 50, no. 4, pp. 1331–1338,
May 2008. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360131506001977

[19] R. Glassey, “Adopting Git/GitHub within teaching: A survey
of tool support,” in Proc. ACM Conf. Global Comput. Educ.,
May 2019, pp. 143–149. [Online]. Available: https://dl.acm.org/
citation.cfm?id=3309518

[20] M. Pérez-Mateo Subirà and M. Guitert Catasús. (2011). Aprender
Y Enseñar En Línea. [Online]. Available: http://cv.uoc.edu/annotation/
e5274644a40912f5e2fbad5191bd9123/564161/PID_00173067/modul_1.
html

[21] GitHub. (2019). GitHub Classroom. [Online]. Available: https://github.
com/education/classroom/

Gunnar Wolf (Graduate Student Member, IEEE)
received the bachelor’s degree in software engi-
neering from Secretaría de Educación Pública in
2011 and the master’s degree in information security
and technologies from Instituto Politécnico Nacional
in 2018. He is currently pursuing the Ph.D. degree in
computer science and engineering with Universidad
Nacional Autónoma de México (UNAM). He is also
an Academic Technical Staff with the Economics
Research Institute (IIEc), UNAM, where he is also
a Teacher with Facultad de Ingeniería (FI). He edited

a freely redistributable textbook teaching operating systems in Spanish
(https://sistop.org/) with FI, IIEc, UNAM, in 2015.

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on March 27,2024 at 01:39:06 UTC from IEEE Xplore. Restrictions apply.

