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Abstract
A fundamental issue of encrypted network communications is en-
suring trust on the identity of the counterpart of a communication.
This is commonly achieved by means of a trust distribution model.

The decentralized trust distribution model, termed Web of Trust, has
been found to have several weaknesses. One such weakness –certifi-
cate poisoning– has brought the main OpenPGP certificate keyserver
network to the limits of sustainability.

The present thesis presents a protocol for key certification and syn-
chronization that avoids the nocive effects of certificate poisoning,
while retaining compatibility with as much as possible of the preex-
isting OpenPGP and HKP toolset.



Chapter 1

Introduction

1.1 Context
Encrypted communications are nowadays the norm on the Internet. But, con-
trary to what many believe, encryption goes way beyond wrapping all commu-
nication in a cryptographic algorithm to obscure third parties from accessing or
tampering with their contents: not only the information must be kept protected
from being intercepted by third parties over the wire, but every endpoint must
ensure the identity of its counterpart to avoid the impersonation by a hostile
third party. While in small-scale settings, case-by-case verification could suffice,
trust distribution models are used for large-scale communication (Jøsang, Gray,
and Kinateder 2006).

There are two main models for trust distribution models: a) The central-
ized model, based on the Public Key Infrastructure Certification Authorities
(PKI-CAs, see Figure 1.1(a)), and b) the distributed model, based on the Web
of Trust (WoT, Figure 1.1(b)) (Abdul-Rahman 1997; Levien 1995; Ryabitsev
2014). Both models rely on a mechanism to distribute (and keep up to date) a
set of identities.

Focusing on the distributed model, the most widespread implementation is
OpenPGP: there is a network of key servers, using the HKP protocol (Horowitz
1997; Shaw 2003), which maintains synchronization (key additions and modifi-
cations) using a gossip or epidemic protocol (Alon, Barak, and Manber 1987;
Demers et al. 1987; Bagdasaryan 2016). This network has been the target of
attacks in recent years, jeopardizing the very viability of the distributed model.

1.2 Problem statement
This work targets the threat of certificate poisoning : an excessive number of cer-
tificates bloating public keys served by the HKP OpenPGP keyserver network.
This attack poses a potential denial-of-service on users of the WoT network,
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Figure 1.1: Transitive trust models. Black lines denote all trust relationships in
the network, and blue dashed lines mean trust paths followed from a user to their
target.

which translates into an existential threat to the keyserver network, jeopardiz-
ing the viability of the WoT model as a whole.

The main implementations of trust schemes based on the Web of Trust model
(WoT) are susceptible to attacks that put the entire model at risk, particularly
certificate poisoning (see Section 2.6.6).; an attacker A creates a large amount of
throwaway keys kA1..kAN , certifying a victim V ’S public key kV with them; thus,
A can make kV ’s size (usually below 100KB) to grow to tens of megabytes; next,
by uploading kV to the public keyserver network, A can easily cause a denial
of service (DoS) on widely used cryptographic tools such as GnuPG whenever
it attempts to parse kV . Given that the HKP protocol used by the keyserver
network does not allow for information deletion, V is forced to migrate to new
keys. As newly created keys have not yet built relations with other users of the
network, and as key certification is a manual process involving individualized
identity checking, this attack can effectively lead to the weakening, or even of
the complete breakdown, of a WoT network.

1.3 Hypothesis
A protocol is proposed that allows for the synchronization of OpenPGP
certificates between keyservers, while preventing the certificate poi-
soning attack. It preserves the main characteristics of the Web of
Trust transitive trust distribution schema, including that of being
fully decentralized, by performing relatively small modifications to
the HKP keyserver interaction model, and allowing for interoper-
ability with the currently deployed client software.
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1.4 Approach
This research aims to explore and contribute with a solution to maintain the
distributed model’s viability, avoiding the need of a centralizing entity. The
objective is to propose a protocol that counteracts certificate poisoning, without
compromising the main properties of the WoT model — particularly, its fully
decentralized, distributed operation.

By requiring all actions affecting a given public key to be signed by its
private counterpart, keyservers are no longer vulnerable to poisoned certificates.
The recommendation of communicating new certification to the signee and not
uploading them to the keyserver network improves from being a best practice to
being mandated by the interaction model itself.

In this thesis, the described implementation is carried out as a proof of con-
cept by modifying Hockeypuck, the currently leading keyserver implementation,
attempting to keep the code modifications to a minimum. An experimental ver-
ification of this is presented, showing the proposed protocol is effective against
the described attack.

1.5 Contributions
We identify as the main contribution of this work:

• A network protocol for the exchange of certifications on cryptographic
identities that can reliably prevent certificate poisoning attacks against
OpenPGP keys in a Web-of-Trust environment, with minimal modification
to server software and without requiring modifying existing end-user tools.

This allows us to also enumerate secondary contributions:

1. Give the key owner the ability to control which certifications are to be
published, granting them reputation control.

2. Allow the WoT decentralized trust model to remain relevant and sustain-
able for communities based on OpenPGP.

1.6 Structure
This work is structured as follows:

• The upcoming chapter, Background, covers the relevant information on en-
crypted communications, protocols and trust models, presenting a general
overview of the field.

• Several attacks on the various trust models have surfaced over the years.
Chapter 3, Related Work presents instances of how they have been faced.
Whenever pertinent, similarities and differences to this work is highlighted.
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• Chapter 4, A proposal for a certificate-poisoning-resistant protocol details
the weaknesses in the WoT model that put its main implementation at
risk, as well as the answers put forward by its developers, and reasons as
to why it is desirable not to lose the WoT’s unique characteristics. The
proposed protocol is presented, contrasting it to the preexisting interaction
model.

• Chapter 5, Implementation, validation and results, presents the technical
details for the implementation and its experimental validation. Section
5.1, it reviews how key creations, certifications and attestations are carried
out with the Sequoia command line tool, and how this translates to packets
following the OpenPGP standard. Section 5.2 proceeds to outline the
experiment that validates the proposed protocol and presents the results
on how its adoption successfully prevents a certificate poisoning attack.

• Finally, Chapter 6, Conclusions, reviews the work developed during this
thesis, verifies the goals set have been reached, discusses the conclusions
of the present work, and sets the lines for future research.
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Chapter 2

Background

This chapter presents the basic concepts used throughout the work: it starts
by presenting a list of basic terminology to be used throughout in Section 2.1.
Section 2.2 presents the basic concepts and implementations of encrypted com-
munications. Section 2.3 explains why, besides encrypting each specific channel,
there is a need for establishing the needed trust between communication end-
points, and details some of the main implementations that do so. Section 2.4
introduces trust distribution models, this is, details on said implementations fo-
cusing on how they handle trust management. Section 2.5 presents an overview
of the two most notable major implementations of the concepts presented in
this chapter. Section 2.6 presents the main weaknesses that have appeared over
the years in trust distribution models.

2.1 Terminology
This work relies on concepts related to Cryptography. Given the terms used
often differ between sub-fields or even between authors, this section briefly
presents the definitions for the main concepts used throughout the following
pages. The terms are harmonized with those defined in the OpenPGP standard
(Callas et al. 2007), following the usage recommended by the Sequoia project
(Schaefer 2023), as well as the inspiration provided by the widely circulated
“Keysigning Party HOWTO” (Brennen 2008).

Some of the concepts referenced in this list are to be defined and presented at
length throughout this chapter. The terms themselves are presented alphabeti-
cally; given they are closely interrelated concepts and this section is to remain
brief, this list is provided as a set of definitions to come back to rather than a
self-contained, ordered glossary, based on the above mentioned references.

Certificate A given user’s public key validated (signed) by itself and, often,
by third parties. Certifying a key implies an external actor has validated
the link between a real world identity and a given key pair.
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Cryptographic key Cryptographic communication methods require the par-
ties of a communication to agree on one (for private key cryptography) or
a set of (for public key cryptography) values with which the contents of the
communication are scrambled and retrieved. The types of cryptography
are presented in the following section.

Key pair A pair of keys for public key cryptography consisting of interrelated
public and private (or secret) keys.

Keyring A collection of certificates, often held by communication parties to
certify other participants’ identities. A keyring can be stored as different
packets on a single file or as a collection of files.

Keyserver An online system hosting a database of certificates public key ma-
terial. Keyservers may be queried by users who wish to acquire the cer-
tificate for a communication party they have not had prior contact with.

Keyserver network A set of keyservers which synchronize their sets of key
material, so that users of any of the connected keyserver get a homoge-
neous set of results.

Keystore Repository of certificates from which a given user can deduce trust
on a third party when initiating communication. A keyserver can be seen
as a public keystore.

Keysigning The action where the owner of an OpenPGP key pair adds their
signature to another user’s certificate.

OpenPGP The communications standard that encompasses the original PGP
program and subsequent implementations, the format of the messages ex-
changed by said implementations, and an ecosystem of tools used to op-
erate with them. OpenPGP can operate with a number of cryptographic
algorithms, and provides a public key cryptosystem.

Pretty Good Privacy (PGP) Privacy software developed by Phil Zimmer-
mann in 1991, which includes public key cryptography, a standard packet
and key format, and symmetric encryption as well.

Public Key In public key cryptography, the key of a key pair which can be
shared. For practical uses, when transitive trust schemes are used, public
keys are often distributed as part of certificates; literature often conflates
their meaning.

Self-signature The OpenPGP standard specifies a certificate including as a
minimum the relevant public key, as well as a certification of said key
with its own private key component.

Secret or Private Key In public key cryptography, the key of a key pair
which is kept secure. The most common usage in cryptography is the
term “Private key”, but partly due to its long history, in OpenPGP the
term “Secret key” is still prevalent.
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Transferable Public Key A certificate that does not include any private (or
secret) key material.

Transferable Secret Key A certificate that includes private key material.

Trust Path A route by which trust is extended from one entity to another. In
OpenPGP, this is a link of trust between two public keys.

Web of Trust (WoT) A trust model based on the collection (network) of cer-
tifications upon keys and resultant trust paths in a user-centered trust
model which provide for authentication. Collectively, the trust relation-
ships between a group of keys.

2.2 Encrypted communications
Network communications under the TCP/IP protocol family with which Inter-
net operates are, by default, not secured in any way: the network protocol design
is layered, and pursues as a design goal being as light and flexible as possible
(Braden 1989). As Figure 2.1 shows, communications over TCP/IP appear as
a protocol stack, where each of the layers communicates with its correspond-
ing layer in the remote host — and none of them deals with securing network
communications (Oppliger 1998).

Application Application
Process to process

Transport Transport
Host to host

Internet Internet

Link Link

Figure 2.1: Communication layers used in the TCP/IP protocol family

Users needing to ensure in-flight data security —be it for eavesdropping
resistance, ensuring message integrity, or certifying message provenance— do so
by tunneling application-level communications, as it is done by the Transport
Layer Security protocol (see Subsection 2.5.1; Chen, Miao, and Q. Wang 2007).

On the other hand, users needing to ensure data security in messages that are
to be stored need a different mechanism: it is not just a matter of encrypting
the data while in transit, but it should be stored strictly in encrypted form
only, and decrypted only on demand, as it is done by the implementations of
the OpenPGP standard (see Subsection 2.5.2, Schwenk 2022, p. 377).
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Cryptographic communications require parties to a communications channel
to use a key or set of keys to perform the needed transformations on the data to
encrypt and decrypt it. Algorithms that work by having all parties to the com-
munication use the same key make up private key cryptography (see Subsection
2.2.1), while those in which each of the parties has a different key pair belong
to public key cryptography (see Subsection 2.2.2).

2.2.1 Private key cryptography
Cryptographic algorithms that require all valid users of a communication chan-
nel to provide the same key are termed private key or symmetric cryptography.
This means, there is a set of symbols or values that allows for decrypting or
participating in a communications channel (W. Stallings 2017, pp. 86–87).

Communications secured by private key cryptography require the key to be
kept secret only to the parties involved: any hostile party obtaining the key is
able to decrypt messages or pass forged messages as if they are legitimate.

Private key cryptography exists since early in human history. The Caesar
cipher, a simple mono-alphabetic substitution cipher used over 2000 years ago,
uses as its key a small integer k, 0 < k < 26: the number of characters to
shift the whole alphabet. The messages encrypted with it are unintelligible
to people not knowing both the algorithm and the key used. Of course, this
early algorithm is easy to break by a simple brute-force attack; modern-day
algorithms are strong enough to resist any such attack by current computers.
One of the strong points in favor of private key algorithms is that they are very
efficient, even for large streams of data (Menezes, Van Oorschot, and Vanstone
1996, p. 31).

Private key cryptography is affected by the key distribution problem (Merkle
1978): if users can find a channel secure enough to use it to agree on a common
key, they could also be able to use it to exchange their full communications.
This means, it is not feasible to use only this kind of cryptography as a basis for
network-wide communications between arbitrary parties: a key establishment
phase needs to take place prior to sustaining any encrypted communications over
a secure channel. Furthermore, to ensure private one-to-one communications
using private key cryptography, each participant in the network must use a
different key for each of the other participants, and the total amount of keys is
n×(n−1)

2 , as Figure 2.2 shows (W. Stallings 2017, p. 443). As n grows larger, the
complexity of securely handling a quadratically-growing number of keys becomes
overwhelming. This issue is termed the n2 key distribution problem (Menezes,
Van Oorschot, and Vanstone 1996, p. 546).

2.2.2 Public key cryptography
Public key cryptography is introduced by the seminal work of Diffie and Hellman
1976. Quoting from its abstract:

(. . . )Widening applications of teleprocessing have given rise to a
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Figure 2.2: When using private key cryptography, each participant in the network
must use a different key for each of the other participants, yielding n×(n−1)
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in the system (W. Stallings 2017, p. 443).

need for new types of cryptographic systems, which minimize the
need for secure key distribution channels and supply the equivalent
of a written signature.

Diffie and Hellman 1976 is considered a seminal paper as it is the first to
propose a cryptosystem under which each participant generates and uses two
keys: a private one, to be closely guarded in secret, and a public one, that can be
widely distributed. The keys are different but related : there are two functions
implementing invertible transformations, encrypt E and decrypt D, which given
a message and the corresponding key inverts each other.

R. L. Rivest, Shamir, and Adleman 1978 present the first practical public-key
encryption and signature scheme (Menezes, Van Oorschot, and Vanstone 1996,
p. 2), with an algorithm now referred to as RSA, based on the intractability
of factoring large integers. In the cryptosystem brought forward by Rivest,
Shamir and Adleman, given a participant A that publishes their public key kA
and guards their private key k′A, if a cleartext message M and the public key kA
are input to E, it yields the encrypted message C; given the encrypted message
C and the private key k′A to D, it decrypts it, yielding the original message, M .
This is,

C = E(kA,M)

M = D(k′A, C)

E and D are thus known as trapdoor one-way functions (W. Stallings 2017,
288–293): they are easy to calculate in one direction, but infeasible to invert
without having access to the corresponding key.
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Functions D and E can also be used to certify a given message M is emitted
by a participant of a network A: if A uses their private key k′A to encrypt a
cleartext message M , the result becomes the signed message S (Menezes, Van
Oorschot, and Vanstone 1996, p. 433; R. L. Rivest, Shamir, and Adleman 1978,
p. 121):

S = E(k′A,M)

M = D(kA, S)

Thus, any other participant with knowledge of A’s public key kA can retrieve
the original message, and independently, prove it has been effectively generated
by A. This usage is usually called verifying a message. For practical reasons,
signatures are usually performed over hashes of the full message rather than
over the message itself (Menezes, Van Oorschot, and Vanstone 1996, p. 429)

2.3 Trust distribution models
Given that the public keys can be, in fact, published, the constraints for agreeing
on a secret prior to establishing secure communication between two participants
is vastly reduced — but care must still be taken by all participants to ensure
they are communicating with the correct destination user, and not with an
impersonator. This is known as a Man-in-the-Middle or MitM attack (Conti,
Dragoni, and Lesyk 2016).

In a global scale network like the Internet, it is impossible for any given
participant to know all of the public keys for other participants prior to engaging
in communications with them. Trust distribution models tackle the problem of
how to convey trust to the identity of a given certificate: how to ensure it really
belongs to the desired endpoint, and not to an impostor (B. Borcherding and M.
Borcherding 1998). To do so, trust distribution models build on the certification
capability of public key cryptosystem: if user U knows already an introducer I’s
certificate, and I knows provider P ’s, the first time U contacts P , P presents
its certified public key CkP so that:

CkP ← {kP , E(k′I , H(kP ))}

CkP consists of P ’s public key kP joined with the encryption, using I’s
private key k′I of the result of hashing kP (Schwenk 2022, 383–385). This way,
U has a trust path to P , introduced by I.

However, this still presents a problem when considering network-wide de-
ployment: how can U know which introducer I to choose in order to build a
trust path to P? How can P know which certificates to serve together with kP
when queried for CkP ?
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2.3.1 Public Key Infrastructure Certificate Authorities (PKI-
CAs)

The most commonly used trust distribution model bases its operation on Public
Key Infrastructure Certificate Authorities, also termed trust hierarchies (B.
Borcherding and M. Borcherding 1998). In this model, graphically exemplified in
Figure 1.1(a), there is a small group of central, ultimately trusted entries (trust
anchors), which certify a set of Certifying Authorities possibly arranged in a
hierarchy expressing trust relationships, particularly for delegating certification
with specific characteristics.

Trust anchors are set of over a hundred public keys, usually defined by the
operating system or Web browser, and are the base for the operation of TLS,
covered in Section 2.5.1. This model is based upon hierarchical, transitive trust :
in order for user A to trust system S’s identity, S presents a certificate chain,
signed by Certification Authority CA, and ultimately signed by TA, one of the
defined trust anchors, as presented in the previous section (CA/Browser Forum
2021, 16–18):

CkS ← {kS , E(k′CA, H(kS))};

CkCA ← {kCA, E(k′TA, h(kCA))};

CkTA ← Trust anchor

Certificates under this model are usually sent as part of the session estab-
lishment protocol, or attached to every relevant message in the case of non-
connection-oriented protocols (Rose et al. 2016, p. 13).

A vast majority of the encrypted network traffic nowadays verifies the ser-
vice’s identity by using the this trust model. Trust anchors are usually defined
by operating system or web browser providers, not by end users (W. Stallings
2017, p. 457), and although client certificates are possible to obtain, due to their
cost and complexity (Aas et al. 2019), its operation is usually limited to end users
verifying service providers’ identity (Fu et al. 2001). Prospective CAs seeking to
be included in the default lists trusted by operating systems and browsers have
to comply with the baseline requirements defined by the CA/Browser Forum
2021.

2.3.2 Web of Trust (WoT)
There are, however, several use cases for which PKI-CAs are not a good fit.
PKI-CA is ill suited for communications that can be modeled as peer to peer
connections, such as e-mail or instant messaging, where trust is measured based
on a set of individual nodes representing their social interactions. Models in
which universal, system-wide trust anchors cannot be determined, have to be
devised in a decentralized way: each user of the network acts as their own root
of trust, and certifies other arbitrary nodes based on whichever rules are set for
said network (usually, based on personally assessing the corresponding user’s
identity and control of the presented key), as presented in Figure 1.1(b), in
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a fashion familiar to many as social network diagrams. The introduction of
SDSI — A Simple Distributed Security Infrastructure starts by highlighting the
unsuitability of the PKI-CA model to many common scenarios (Ronald L Rivest
and Lampson 1996):

This paper was motivated by the perception that the existing pro-
posals for a public-key infrastructure (such as X.509-based schemes
that require global certificate hierarchies) are both excessively com-
plex and incomplete.

In contrast with the PKI-CAs model, in WoT each of the system’s users
can validate or certify any other arbitrary user’s key. Although trust is, again,
conveyed transitively, it is no longer hierarchical; the network is a directed graph
often presenting cycles and paths have to be sought between any two parties
wanting to engage in communication. Paths do not need to be unique; the chain
of certificates followed by node b to node k in the aforementioned figure, setting
a maximum depth of five hops, can be either of:

Ckk ← {kk, E(k′d, h(kk))};

Ckd ← {kd, E(k′a, h(kd))};

Cka ← {ka, E(k′b, H(ka))};

Ckb ← Trust path root

Ckk ← {kk, E(k′d, h(kk))};

Ckd ← {kd, E(k′e, h(kd))};

Cke ← {ke, E(k′g, H(ke))};

Ckg ← {kg, E(k′b, H(kg))};

Ckb ← Trust path root

In contrast with the PKI-CA model, the trust path root is the user interested
in establishing trust to any other given point in the graph, and not an externally
selected third party. Quoting Streib 2003:

There are other ways to measure how “trusted” a key is, many of
them very misleading.
First of all, any measure of trust that does not include your own key,
and signatures you’ve made and received, is bad. Just because I’ve
published something that claims that key X is relatively trusted,
does not mean that you should trust it. Your personal web of trust
is really the only good measure of trust.

Although this definition might seem excessively ad-hoc for wide scale use,
it clearly presents the main characteristic of a WoT: it gives a network view
centered on each individual, and allows them to set their own parameters and
boundaries as to whom to extend trust to. The OpenPGP WoT key network has
been found to exhibit emergence of small-world caracteristics and it is probably
the first such self-organized system (Čapkun, Buttyán, and Hubaux 2002).

While there are other notable instances of WoT networks (Brunner et al.
2020), the focus for this work remains with the most used implementation:
OpenPGP.

When certifying a given key, OpenPGP defines four trust levels (Yakubov
et al. 2020):
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Full (level=4) certificate holder’s signature of other users’ certificates is fully
trusted.

Marginal (level=3) certificate holder’s signature can be trusted, but it is
better to find other signatures with full trust to confirm the introduction
of a certain certificate.

Untrustworthy (level=2) certificate holder’s signature should not be trusted
and his signature on other users’ certificates should be ignored.

Don’t know (level=1) there is uncertainty about trustworthiness of certifi-
cate holder’s signatures of other users’ certificates

WoT transitive trust assessment presents a high mathematical complexity
which can be mapped in different ways; different users set their trust thresholds
at different levels. Jøsang 1999 presents an algebra to quantify trust based
on Subjective Logic. The complexity of exploring and determining trust paths
does not, however, have to incur in a full network analysis and it is thus not
exponential, but can be kept polynomial as only the shortest recommendation
paths are searched (B. Borcherding and M. Borcherding 1998).

An important use case of WoT schemes is worth mentioning: given the diffi-
culty of supporting alternative PKI-CA roots of trust under operating-system-
provided lists, enterprise- or government-sized organizations can implement a
centralized model over a WoT (i.e. by having one key trusted universally by all
of its users’ generated keys) (Koch 2021a).

In this work, the focus is placed on the global properties of the WoT network
as a whole, so no further attention is devoted to signature trust levels or trust
quantification.

2.3.3 Trust On First Use (TOFU)
As the two preceding subsections show, transitive trust presents several pitfalls:
mainly the ability to select trust agents and comply with the needed steps for
obtaining their certificates.

Trust on First Use (TOFU ), also termed as Leap of Faith (LoF) or Weak
Authentication (WA), is a security model where a user, upon a first connection
to a yet unauthenticated endpoint, instead of looking for a trusted third party to
confirm a new peer’s identity, trusts the presented identity to be valid the first
time it is encountered, and locally stores it. For any future interactions, though,
the communication channel is authenticated with the preexisting, stored identity
(Pham and Aura 2011). The model is from the onset known to be weaker than
PKI-CAs and WoT, but it is widely used due to it not requiring any additional
infrastructure (registration effort, cost, and scalability). Quoting Pham and
Aura 2011:

The security of LoF relies on an important assumption that the at-
tacker is unlikely to be present during the first communication (. . . )
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In the classical computer security model, LoF is unquestionably in-
secure. In practice, it has been applied in several context. The most
prominent one is SSH. (. . . ) Also, when a user downloads and in-
stalls a web browser or an operating system, a list of root certificates
(. . . ) is configured on that user’s machine. Most users do not bother
to verify offline the correctness of these certificates, and thus the LoF
mechanism is applied.

Even given all its limitations, TOFU adoption has grown over the years.
SSH, mentioned in the above quote, is a very specific case where a systems
administrator generates keys in several systems and trusts them because their
ability to immediately verify the functionality. Bluetooth establishes crypto-
graphic secure channels between discrete devices with no proper MitM protec-
tion because it is a distance-limited protocol, and usually runs in devices with
interfaces too limited to perform deeper checking (Sandhya and Devi 2012).
The multimedia-oriented Session Initiation Protocol (SIP) needs to blend in
with preexisting communications networks where any authentication other than
TOFU would be extremely impractical, as well as disrupting to the expected
communication experience (Arkko and Nikander 2004). However, since the mid
2010s, TOFU has also grown into a very important niche, where it has become
the dominant trust distribution model: instant messaging applications, such
as WhatsApp, Telegram or Signal, provide an opportunistic end-to-end secure
messaging mode based on TOFU (Herzberg and Leibowitz 2016).

Instant messaging is a very particular case: given its wide adoption, with im-
plementations reaching over a billion users, and the usability hurdles of encryp-
tion (Whitten and J Doug Tygar 1999), and the low awareness of its importance
(Renaud, Volkamer, and Renkema-Padmos 2014), notifications regarding mis-
matching keys have to be kept as non-intrusive as possible, but provide a means
for off-band verification by tech savvy users (Johansen et al. 2017, pp. 23–48).
TOFU has proven to be a good compromise, even though the overall identity as-
surance of the system is lower than with the other mentioned trust distribution
models (Kahn Gillmor 2021, 155–159).

The Autocrypt project, pursuing furthering usability in e-mail encryption
in order for more users to be able to adopt it, while building over PGP (which
uses the WoT), acknowledges the advantages of TOFU and provides a hybrid
trust mechanism. Quoting Krekel, McKelvey, and Lefherz 2018,

That’s why we trust on first use and distribute public keys in the
email header. It is hidden, but decentralized, and leaves the users
in control of their keys, without them necessarily knowing it. And
if they want to do an out-of-band verification with their associates,
there will always be user-friendly options, e.g. with a QR code com-
parison.

Technically, Autocrypt is not much more than a set of some reason-
able configuration decisions. But together, the decisions made by
Autocrypt can streamline the complex PGP system to be usable for
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encrypted communication between everyone. What encrypted com-
munication needs is simple, measured steps of improvement. That’s
the only way to bring people together while maintaining the original
intent of the architecture.

Thus, TOFU provides a convenient scheme for key distribution, a topic
that is presented next, and for minimal involvement cases are as a simple trust
conveying mechanism, although for stronger security guarantees it still must be
combined with a proper trust distribution model.

2.4 Key distribution
Several schemes are available for determining trust in a given party’s identities.
However, a problem not yet described is how the certificates themselves for
participants of a network are made reachable for said network’s participants.

When employing the TOFU model, key distribution is inherently solved: the
different TOFU models include the public key as part of their channel estab-
lishment protocol (Arkko and Nikander 2004).

For the PKI-CA model, in its most common implementation (TLS), the key
distribution mechanism is very similar: the first step of the TLS handshake is the
key share (Rescorla 2018, pp. 10, 48). The main difference with TOFU-based
session establishment is that the key share phase is followed by the certificate
chain exchange phase (Rescorla 2018, p. 64), where the communication end-
points exchange the CA certificates for the keys. This still leaves the issue of
communicating trust regarding the trust anchors. As mentioned in Subsection
2.3.1, they are usually defined by the operating system or Web browser in a
centralized way, and carry ultimate trust for most users’ decisions (Hein 2013).

The nature of WoT, however, makes this procedure impossible: upon ses-
sion establishment, endpoint A does not know which are endpoint B’s trusted
principals, so it cannot offer a certificate chain. This is not a weakness of the
session establishment protocols: in practice, and as Subsection 2.5.2 delineates,
the most common settings for WoT are asyncronous; while there is a session
establishment, it must be kept minimal as there is no round-trip step — session
keys are generated at A, having the knowledge of B’s public key (Callas et al.
2007), but not of the path B is connected to the WoT.

Early users of PGP relied on key distribution parties, in-person gatherings
where a group of users authenticated each other, to later publish their public
keys on their Web pages, but this is clearly a non-scalable solution, as it places
the huge burden of finding the location for a given key on the party interested in
first establishing communications (Rose et al. 2016, p. 73). A natural answer to
this issue is the establishment of an on-line trusted server to serve as a directory
for public keys (Menezes, Van Oorschot, and Vanstone 1996, p. 555).

The first PGP keyserver, developed at MIT in 1994 by Brian A. Lamac-
chia, with an interface allowing it to be queried over e-mail. By 1997, Mark
Horowitz implemented a Web-queriable keyserver, naming it pksd (Public Key-
Server Daemon, Yamane et al. 2003). The interface for querying keyservers has
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been named HKP (OpenPGP HTTP Keyserver Protocol). HKP is an API layer
on top of HTTP (Shaw 2003).

Of course, such a server becomes a single point of failure for the whole WoT
network: if it is offline, any user attempting to fetch keys or certificates would
be effectively blocked from doing so. Even more so, it becomes a single point of
censorship: if an administrator A for the HKP server wants to block users from
securely communicating with a given party B, A can remove B’s key from the
keyserver (Fiskerstrand 2016b).

2.4.1 The HKP public keyserver network
As several independent keyservers appeared online, the need for synchronization
between them becomes clear. The HKP keyserver network uses a gossip-based
set synchronization protocol, nearly optimal in terms of communication com-
plexity, and tractable in computational complexity (Y. M. Minsky 2002; Y.
Minsky and Trachtenberg 2002; Y. Minsky, Trachtenberg, and Zippel 2003).
This allows for the establishment of a keyserver network, offering a consistent
data set over a global network. Out of the full keyserver network, servers that
comply with a set of criteria for inclusion formed the SKS keyservers pool1,
from which all participant keyservers are available (Fiskerstrand 2016a, pp. 10–
19). The pool also has several sub-pools available, grouping servers geographi-
cally to allow users to achieve lower latency while usign them. The SKS name
is taken from the original software implementing both the keyserver and the
synchronization components (Y. Minsky, Klizbe, and Fiskerstrand 2008).

This keyserver pool allows users to upload public keys as well as their certi-
fications to any of the participating keyservers; users can upload information to
the keyservers at any point, and this information is synchronized globally (Rose
et al. 2016, p. 73).

The design of the keyserver network allows for easy peering and full fed-
eration: additional keyservers can be very easily peered with, requiring only
one operator to agree to synchronize with them. Operators are invited to peer
with several keyservers, to ensure network redundancy, allow for faster propa-
gation times for new packets, and yielding lower synchronization sizes for most
synchronization messages (Marshall 2015b).

While SKS is stable and tested software, various attacks –such as the one
prompting this work, as well as legal challenges due to privacy-oriented reg-
ulations such as the European GDPR– have reduced the network’s reliability.
By June 2021, the operator for the keyservers pool decided to decomission the
sks-keyservers.net domain name (Fiskerstrand 2021). The network con-
tinues to operate, although in much smaller numbers, as it is discussed in Subec-
tion 4.1.1. As this document is being written, the SKS keyserver operators are
working to address the several shortcomings leading to this situation (Gallagher
2024a).

1hkp://pool.sks-keyservers.net/
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2.5 Notable implementations
This section covers important implementations of concepts presented earlier in
this work.

2.5.1 Transport Layer Security (TLS)
The most widely spread transitive trust scheme is Transport Layer Security,
presently standardized at its 1.3 protocol version (Rescorla 2018), and formerly
known as Secure Sockets Layer (SSL). This is a protocol family that has been
introduced by Netscape Communications in 1996, with the stated goal of estab-
lishing secure connection channels between any arbitrary two parties. This, in a
time where very few Internet protocols had cryptographic support, and taking
several steps to ensure enough efficiency due to the (at its introduction time)
high complexity, and thus, computational impact cryptographic operations have
for server operations (Freier, Karlton, and Kocher 2011).

From its very conception, SSL, and subsequently TLS, includes trust es-
tablishment since the early connection stages, requiring the exchange of X509
certificates at the session establishment stage. In fact, six of the twelve de-
fined alerts for the connection establishment phase are due to failures regarding
certificate trust management (i.e. bad, unsupported, revoked or expired certifi-
cates). While work has been done on adequating the TLS protocol to be able to
use OpenPGP certificates as well as X509 (Mavrogiannopoulos and Kahn Gill-
mor 2011), its use is explicitly forbidden in the TLS version 1.3 standard. This
is, partly, because the lax enforcement the proposal places on WoT certificate
verification (Rescorla 2018, Subsection 4.4.2):

Considerations about the use of the web of trust or identity and
certificate verification procedures are outside the scope of this docu-
ment. These are considered issues to be handled by the application
layer protocols.

It is important to note that, although the most user-visible use case of TLS
is browser connection to a Web browser, it is an encryption layer that can carry
any TCP-based protocol (Almohri and Evans 2017), or even via IP-over-TLS
tunneling, to extend arbitrary networks, serving as the basis for many Virtual
Private Network (VPN) products (Hosner 2004).

2.5.2 OpenPGP
The first widespread application to provide e-mail users with strong, public
key cryptography is PGP (acronym of Pretty Good Privacy), released by Phil
Zimmermann in 1991. Zimmermann 1999 cites as his main motivation the
erosion of the right to hold private communications in the age of electronic
surveillance. The software is presented particularly as an answer to legislative
projects mandating communications providers to give government agencies the
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ability to eavesdrop in private communications. This worldview continues to
shape related its tools and standards.

Given that throughout the 1990s the United States’ government regarded
strong cryptography as munitions, PGP’s distribution is carried out with its
source code printed and bound as a book (Zimmermann 1995), so its dissemi-
nation would be protected as excercising the right to free speech. Since its first
versions, PGP is released under a free software license, leading to its prompt
adoption by the various groups that during the 1990s produce the different
Linux-based free software distributions and projects. This mainly for its ability
to produce cryptographic signatures, and thus, authenticate source code and
mailing list messages for secure participation in globally distributed develop-
ment teams. Adoption of PGP can also be seen in local free software communi-
ties, leading to the growth WoT networks, interweaving into a fully global WoT
network (Darxus 2002).

Throughout the 1990s, the only implementation for PGP remains the pro-
gram written by Zimmerman and its newer versions. Following the sale of source
code rights for PGP to Network Associates in 1997, and subsequently to Syman-
tec, the development of an official free version ceases. Given the widespread
adoption PGP has had, by 1996 a standardization of its message format is
adopted (Atkins, William Stallings, and Zimmermann 1996), allowing for third
parties’ implementations.

Since the Network Associates acquisition, several implementations have been
developed. The most commonly used and held as a de-facto reference imple-
mentation is GNU Privacy Guard (GnuPG) (Rose et al. 2016, p. 11). It is used
for identity and software authentication in various projects, and it is regarded
as the standard for e-mail encryption (Angwin 2015).

While OpenPGP is very commonly used by unaffiliated individuals as well as
several technical-oriented organizations, its use has understandably not spread
to the corporate area, where S/MIME –based on X.509 certificates and a PKI-
CA trust model– are a much more common choice. OpenPGP provides feature
parity with S/MIME (Rose et al. 2016, pp. 11–13), but its use is explicitly not
recommended in the United States federal government (Rose et al. 2016, p. 74).

The estimated direct and explicit usage of OpenPGP by 2018 is close to
550,000 active users, with a strong correlation of being white males with univer-
sitary education in industrially developed countries (Braun and Oostveen 2019).
Braun points out that, even though PGP’s original intent is to provide encryp-
tion for the masses, many factors (not the least of which is its usability) have
prevented its adoption by others than a tech-savvy, socially privileged subset of
the population.

Many more OpenPGP users, though, are indirect or implicit : several providers
incorporate OpenPGP in their secure communications offering, with some caveats
that are often frowned upon by the traditional OpenPGP community. One such
example is Proton, which offers e-mail, VPN, cloud storage and other services,
and claims to have over 100 million users (Proton AG 2024).
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2.6 Attacks and weaknesses on transitive trust
models

Both transitive trust mechanisms are susceptible to different weaknesses or tar-
geted attacks. This section discusses several of such cases.

2.6.1 Lack of user understanding of the model
Although most users understand a TLS connection (i.e. using the HTTPS
protocol) protects their data in transit by establishing a cryptographically se-
cure channel, the protection it provides against a MitM attack (as described in
Section 2.3) is much less known. Although there are proposals to include cer-
tificate chain of trust information among the user-visible security indicators of
Web browsers (Herzberg and Jbara 2008), they have not been widely adopted.
It has been shown that user understanding of the identity assurance granted by
certificates is often shallow and easy to deceive; quoting Dhamija, J. D. Tygar,
and Hearst 2006:

Attackers can also exploit users’ lack of understanding of the veri-
fication process for SSL certificates. Most users do not know how
to check SSL certificates in the browser or understand the informa-
tion presented in a certificate. In one spoofing strategy, a rogue site
displays a certificate authority’s (CA) trust seal that links to a CA
webpage.

Furthermore, while users have long been advised to check for the use of
https or for the padlock indicator signalling a Web connection is encrypted (see
Figure 2.3), this practice is directly related to the fact that obtaining a valid
certificate takes time and money, and that few attackers would invest in them
— which is no longer true. Quoting Aas et al. 2019, “A major barrier to wider
HTTPS adoption was that deploying it was complicated, expensive, and error-
prone for server operators”. However, the beginning of operations of the Let’s
Encrypt Certification Authority in 2015 directly results in TLS certificates be-
coming available immediately (after a simple and automated domain resolution
verification) and at no cost.

While the overall impact of Let’s Encrypt is highly positive, in that there are
no more barriers to setting up encrypted websites, it undoubtedly leads to the
weakening of trust provided by the CA model. Less than a year after beginning
operations, certificates requested with malicious intent (including for automated
malware delivery, for command and control networks to which trojaned systems
would connect and wait for instructions on when to launch an attack, or for
typosquatting, registering domain names visually similar to established brand’s,
in order to redirect users to them and lure them into revealing their credentials)
have been reported (Manousis et al. 2016; Carbone 2016). By 2018, half of all
the phishing sites (sites built to trick users into submitting their login credentials
or other personal data) have valid TLS certificates (Krebs 2018).
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(a) In-browser indication of an insecure http
connection: a Not secure indicator.

(b) In-browser indication of a secure https
connection, without user intervention: only
a padlock.

(c) Clicking on the padlock reveals the con-
nection is secure dialog, emphasizing the
connection is encrypted (but not explain-
ing how the target site’s identity can be
trusted).

(d) Only a second click provides information
regarding the CA that issued the certificate.

Figure 2.3: Getting to the trust information for the identity of a Web site requires
user interaction; this simplifies browsing for the user, but makes the trust model
much less visible. Screenshots taken from version 90 of the Chromium Web
browser.

While the PKI-CA model includes several categories of validation for keys,
and Let’s Encrypt issues only certificates with the lowest validation certification
–Domain Validation (DV)– it is shown that, despite visual cues, users are usually
unaware of the difference between DV certificates and Extended Validation (EV)
certificates (Thompson et al. 2019). Latest browser versions even drop those
visual cues (O’Brien 2019; Hofmann 2019), rendering the distinction between
DV and EV certificates even harder for end users to recognize (Hunt 2019).

2.6.2 Forgery or theft of CA keys
In the PKI-CA model, CAs are not only required to issue certificates, but if there
is any evidence of a certified key being compromised, or rendered insecure due to
cryptographic advances, they must also revoke the affected keys and list them
both in a well known Certificate Revocation List (CRL) and via the Online
Certificate Status Protocol (OCSP), at least for the duration of the original
certificate (CA/Browser Forum 2021, Section 4.9).
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CAs are also required to follow a strict physical and procedural security
process to ensure the certification key is kept secure at all times (CA/Browser
Forum 2021, Chapters 5 and 6). However, throughout the history of the PKI-
CA model, and particularly given the use of TLS on the Internet, there are
several high profile CA key management incidents.

Verification of certificate revocation The CRLs mechanism for verifying
key revocation via CRLs does not scale following the Internet massifica-
tion. This mechanism specifies a single CRL is to be returned upon client
request by each CA, including all of the signed certificates still within their
validity range that needed to be revoked (Gibson 2013).

By 2013, several CRLs had become up to 28MB long, with an exponential
growth rate. Transfering 28MB only to check whether it is safe to estab-
lish a Web session introduces too much of a delay and penalty to network
connections. By then, 44% of the revocations stated as their reason to
be a key compromise — that is, either the server in question is breached,
potentially exposing the certificate to hostile third parties, or errors han-
dling the private key material that could have placed it on a vulnerable
location (Gibson 2013).

OCSP, standardized in RFC 2560 and updated in RFC 6960 (Myers et al.
1999; Santesson et al. 2013), reduces the network load by specifying a
protocol with which only the required certificate is fetched from the CA.
However, given OCSP requests are to be generated at each connection to a
new site, this also becomes an unreasonable load for the CA servers. Fur-
thermore, privacy activists point out it discloses user browsing habits by
giving detailed trails as to precisely which Web sites they usually visited.

A further problem both with CRLs and OCSP is the client’s action in
case of certification server’s unavailability — what happens if the status
of a certificate as revoked or valid cannot be checked? The client can
either fail open (assume the certificate remains valid, as it is the most
usual case, exposing the client to MitM attacks) or fail closed (assume
the certificate is invalid, assuring protection against MiTM, but probably
causing a DoS). None of those approaches is good for all cases (Berkowsky
and Hayajneh 2017).

The standardization of TLS version 1.2 (Eastlake 2011) introduces the
status request extension, with which the server can send to the client
a timestamped OCSP response as part of the session establishment, a
practice known as certificate stapling.

However, although what has been reviewed in this section so far seems to
cover the issue of properly handling and revoking keys under the PKI-CA
model, the issue of CA key management still has one more troubling angle.

Breach of trust in CA keys Certification Authorities need to be extremely
careful on their practices regarding their certification keys. The CA/Browser
Forum periodically updates the Baseline Requirements for the Issuance
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and Management of Publicly-Trusted Certificates since 2011 (CA/Browser
Forum 2021, pp. 9–16), stating:

This document describes an integrated set of technologies, pro-
tocols, identity-proofing, life-cycle management, and auditing
requirements that are necessary (but not sufficient) for the is-
suance and management of Publicly-Trusted Certificates; Cer-
tificates that are trusted by virtue of the fact that their cor-
responding Root Certificate is distributed in widely-available
application software.

Nevertheless, various incidents highlight the need for ensuring the CAs
actually comply with the practices presented in the baseline requirements.
Although CAs are expected to act swiftly and openly, that is very often
not the case due to the loss of trust such an admission implies (Berkowsky
and Hayajneh 2017).

In August 2011, Iranian users are presented with a rogue certificate for
the *.google.com wildcard domain, signed by the Dutch CA DigiNotar
(Nightingale 2011). An independent preliminary analysis showed DigiNo-
tar had been breached due to poor security practices, and that, given the
weaknesses in the implementation of the PKI-CA ecosystem as used by
Web browsers, the depth of the breach required patching the list of trusted
CAs in every Internet-connected device (Prins 2011).

There are reports of close to 50 fraudulently issued certificates related to
this incident, many of them for high-profile domains. DigiNotar marks the
first case for a a CA to be outright removed from browsers’ root of trust
key directory, highlighting the lack of care this and several other CAs had
(Amann et al. 2017).

A similar, although more worrying, case happened few months later. The
Trustwave CA knowingly produces a subordinate root certificate allowing
their client to create and sign arbitrary certificates (Espiner 2012). This
incident, again, results in manually patching of all CAs across deployed
systems.

In 2015, a certificate for GitHub iss found to be issued by the Chinese
CA WoSign, without properly checking the site ownership, allowing for
potential MitM attacks. Upon further inspection, many more issues come
up with this CA. These include the continued issuance of cryptographi-
cally weak SHA-1 certificates after the cutoff date where the CA/Browser
Forum agreed not to issue them, deliberately backdating them so that
browsers would still accept them. Thus, issuing many more spurious cer-
tificates and refusing to revoke them when they have been found, and even
lying about the cause for such certificates, revealed upon the audit of their
logs. Even having all of that documented evidence, the time required to
drop WoSign from the list of roots of trust for the main browsers has been
over 18 months, because of the number of existing certificates that hae
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been still under legitimate use (Berkowsky and Hayajneh 2017; Wilson
2016).

In 2015, researchers find that OEM versions of Windows installed in
Lenovo computers include a self-signed certificate as part of their roots
of trust. The purpose of this spurious certificate is for the SuperFish pro-
gram (also part of the pre-installed operating system image) to intercept
browser sessions, performing a MitM attack, and inserting advertisements
in the users’ browser (Berkowsky and Hayajneh 2017; Lenovo 2015).

Private keys should never be disclosed to a third party, they must be
closely guarded by a keypair owner. In 2018, a statement by the Trustico
intermediary CA, operating under the DigiCert root certificate, mentions
they stored the private keys for some for the certificates they issued (al-
legedly as a way to protect their users). In an attempt to migrate to
the Comodo root, over 23,000 private keys they held are mailed to Dig-
iCert. This led to the keys being immediately revoked, causing all of their
customers the need to generate new keypairs and have them re-certified
(Varghese 2018).

In 2013, the Heartbleed vulnerability is disclosed triggering a massive set
of revocations. Several different implementations for the use of TOFU-
based schemes for TLS security were proposed (Toth and Vlieg 2013), but
none of them managed to get enough user traction to be adopted beyond
a small group of propsers.

Naturally, the presented recounts for both issues present several examples of
the issues, and are not exhaustive. Their inclusion attempts to highlight the fact
that TLS security, based on the PKI-CA centralized trust distribution model,
although has been widely adopted for Internet-based communications, is by no
means exempt of issues and challenges.

Important contributions in this regard come to light over the past decade;
worth highlighting is the move away from the issuance of long-lived certificates
(one to four years) that has been the industry standard, to few days (precise
number not stated in the proposal — Topalovic et al. 2012).

The emergence of the Let’s Encrypt CA above, together with tools for au-
tomatically querying and keeping updated server-side certificates, points in the
direction presented by Topalovic et al.; certificates signed by Let’s Encrypt have
three months long validity periods.

2.6.3 The user interface is to blame: Evil32

One of the main critiques of the OpenPGP ecosystem is the poor usability of
its tooling — so much, it has repeatedly become a staple of bad user interface
design (Whitten and J Doug Tygar 1999; Sheng et al. 2006; Woo 2006; Ruoti et
al. 2015). A fundamental aspect that many users apply incorrectly throughout
the years is key verification after acquiring it from a public key server. This is,
after Alice looks up Bob’s public key from a public keyserver, how to choose

27



the right key? Even in the straightest case and without any attackers in play,
Bob might have homonyms on the network (although the mail address cannot
be the same), and he might used have several keys in the past, revoked or in
disuse for different reasons.

OpenPGP keys are often indexed and referred to using their fingerprint,
the hexadecimal representation of the 160-bit SHA1 hash of the full public key
(Callas et al. 2007, p. 71) (see Figure 2.4). Still, this representation is 40 char-
acters long (in the referred figure, the line starting with 4D14 and finishing with
5360), impractical for person-to-person communication, or even verification.

Figure 2.4: Obtaining the fingerprint of a public OpenPGP key

For many years, it has been customary to refer to key material by just
using the short key ID (a truncation of just the last 32 bits of the fingerprint,
0x6E145360 for the presented example, Wolf 2016). Bob can thus include his
short key ID as an epigraph on all of his mails, and Alice can refer to any of them
to verify she has the right key to communicate with. Although Long key IDs (a
truncation of the last 64 bits of the fingerprint) are used for applications that
need to manage large volumes of cryptographic keys, such as curated keyrings
for large projects (Wolf and Gallegos 2017), they are not deemed as human-
memorable and human-useful as short key IDs — the long key ID for the above
mentioned key would be 0x2404C9546E145360, clearly more identifiable than
the full fingerprint, but far from being convenient or memorable for the end user.

However, 32 bits is a very short address space. Given true randomness and
no hostile intentions, collisions would happen with only with 1

232 probability. As
computing power grows, by the means of calculating many keys, vanity short
IDs are generated by several OpenPGP users, as shown in Figure 2.5.

Figure 2.5: The increase in computing power allowed users to create vanity short
key IDs (person-identifying UIDs omitted).

Generating vanity OpenPGP keys by scripting calls to the GnuPG binaries
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still requires an overly large amount of work. In 2012, with the announcement of
the Scallion tool (Klafter and Swanson 2012), GPU computation can easily be
used to create vanity OpenPGP keys by means of abusing the protocol without
the need for brute-forcing the full problem space, increasing instead one of the
parameters, and selecting from its output where it matches the desired string.
As a means for the demonstration of this tool, the authors make use of Scallion
to create keys whose short key IDs collided with the corresponding ones for
all of the keys in the OpenPGP WoT’s strong set (keys that had at least one
trust relationship to and from the largest set of keys in the WoT), publishing
it under the Evil32 moniker. Not only that, the generated keys mimicking the
trust relationships existing in the WoT. For a user checking only short key IDs,
Evil32 keys are discernible only because all of the keys and trust signatures are
created on the same date, as shown in Figure 2.6.

Figure 2.6: Not only a collision between short IDs is proven, but the first UID
and the trust relationship between keys are mirrored as well to the Evil32 set.

The Evil32 experiment emphasizes on the fact that this is not a vulnerability
of OpenPGP, inasmuch keys are not breached and there be no way of confusion
if keys are used correctly ; it is only the short key ID notation that urgently
needed to be migrated away from. As can be seen in this work’s author’s case
(see Figure 2.7), while both keys match the 0xC1DB21F, the legitimate key is
0x673A03E4C1DB921F, and the corresponding Evil32 key is clearly different
— 0xFBFDEDC1DB921F.

Quoting the authors of the Evil32 project’s Web page, “Aren’t you supposed
to use the Web of Trust to verify the authenticity of keys? Absolutely! The web
of trust is a great mechanism by which to verify keys but it’s complicated. As
a result, it is often not used” (Klafter and Swanson 2014).

While the Evil32 experiment is undoubtedly an adversarial attack, it must
be emphasized it has not been carried out with malicious intent, but as a way

29



Figure 2.7: Result of querying the keyservers for the 0xC1DB921F short ID:
Two colliding keys with the same first UID. The second key returned belongs to
the Evil32 set.

to prove beyond any doubt the widespread use of short key IDs is no longer
secure.

Finally, cryptographic material, derived from random sources, simply cannot
be presented in a user friendly way. Kahn Gillmor 2013 claims the use of key
IDs should be abandoned altogether, and either replaced by human-meaningful
values when presented to users, or with the full 160-bit key fingerprint within
scripts and other automated tools. Just as short key IDs are just an arbitrary
truncation that greatly diminishes the strong key unicity requirements and al-
lows for exploits derived from wrong identification, long key IDs still present a
vulnerable scheme for key identification, but also lose whatever human memo-
rability short key IDs provided.

Non-targeted long key ID collisions (this is, collisions not attempted as a
preimage attack on a given value, just random values found to collide) have
been achieved, and due to being basically a birthday attack, can be achieved by
the generation of an average of 232 keys (Gil 2013; Skeeto 2019; Wellons 2019).
It is still, however, computationally unfeasible to perform attacks similar to the
Evil32 set using 64-bit identifiers.

Nevertheless, Evil32 draws attention to a simple yet powerful problem: if
OpenPGP users are supposed to verify the WoT when establishing contact with
a new user but in practice do not do so, said users are most likely to fall prey
to any impersonation. While formal literature does not yet collect the term,
in informal communications this has been named UID poisoning : uploading
rogue identities to the keyservers with invalid UIDs, corresponding either to
nonexisting users, or leading to the equivocation of users attempting to contact
legitimate users. The Evil32 attack is a prime example, but it is far from
the only available one; an example of hiding compromised data by attempting
equivocation (Lawrence 2018) can be traced on the GnuPG mailing list, where
it provoked a very interesting discussion about a way to achieve removal of key
information from the keyserver network.
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2.6.4 Key UID information for storing arbitrary informa-
tion

The design of the SKS keyserver network presented in Subsection 2.4.1 is explic-
itly designed to be resistant to a threat model including national governments’
interference or censorship (Hansen 2018). OpenPGP data consists on a set of
concatenated data packets following some simple ordering rules (Callas et al.
2007, p. 68). Keyservers rely on a gossip-based set synchronization protocol,
so the keyserver network accepts new keys and updates on existing keys, but
no information can be realistically removed from it — any server still carrying
a packet not found at other servers injects it back into the network. The pro-
tocol provides no provision for removing unwanted information. This issue has
carried legal issues for keyserver operators, being unable to respond to deletion
requests based on national privacy laws newer than the implementation (Pram-
berger 2010). The adoption of the General Data Protection Regulation (GDPR)
by the European Union in 2016 makes this issue even more important.

The OpenPGP message format standard specifies keys should have a User
ID packet that “consists of UTF-8 text that is intended to represent the name
and email address of the key holder. By convention, it includes an RFC 2822
mail name-addr, but there are no restrictions on its content” (Callas et al. 2007,
p. 48). This is, there is no enforced format on the contents of User ID strings. An
attack on this model is, then, the mass creation and upload of non-meaningful
keys, using the WoT as some way of graffiti pad (Lee 2014). An example is
presented by Lee at the Observe. Hack. Make. 2013 hacker gathering: by
generating one OpenPGP key per line with arbitrary ASCII characters in the
field regularly used for the owner’s user ID (see Figure 2.8(a)), he signed his
own OpenPGP key (Figure 2.8(b)), resulting in the graffiti depicted in Figure
2.8(c)

(a) One of the throwaway identities created
for the “Trolling the Web of Trust” attack

(b) Beginning of the listing for the author
of the attack: a regular vanity key

(c) Down the signatures list, the attack is shown as a multiline graffiti

Figure 2.8: Example of the Trolling the Web of Trust attack

The impact of this attack per sé is not very high: the creation of some
throwaway identities, and the use of the WoT in a way other than intended,
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but it highlighted a huge potential for abuse. But in 2018 –again, as a proof
of concept, showing it would be impossible to properly take action against a
GDPR request for information deletion (Yakamo 2018a)– a program is published
that enabled the encoding of arbitrary information as key and certifications
material (Yakamo 2018b; Yakamo 2019), allowing the abuse of the SKS network
for arbitrary file storage. While this attack has not been widely observed, its
effects can be devastating on the keyserver network, as it potentially becomes
a distributed, append-only media, with no content removal facilities. If files
deemed illegal to be possessed are to be uploaded in this way, this could make
many server operators to shut down their servers, with a reasoning similar to
Pramberger 2010.

2.6.5 Lack of use of the trust model
An important weakness can be found in the way users have adopted the use of
OpenPGP: whether its users care about the WoT, or they use OpenPGP imple-
mentations only for encrypting communications to out-of-band-verified identi-
ties (if at all). This issue does not threaten the validity of the WoT, but does
shed a light into its true size.

In November 15, 2018, the HKP keyserver network consisted of 5 217 474 cer-
tificates, which are made of public keys and their cross-certifications (Yakubov et
al. 2020). The number of signatures each of those certificates, however, present
a figure very different to what Web of Trust could convey, as seen in Table 2.1:
a very large majority (84%) of existing keys exist in isolation and are not linked
to any other key. Graphing the amount of keys in relation to the amount of
signatures each of them has yields an asymptotic progression, as can be seen in
Figure 2.9.

Table 2.1: The distribution of OpenPGP certificates based on the number of
signers on 2018.11.15) (Yakubov et al. 2020)

No. of Signers No. of PGP Keys Percentage
0 4394932 84.23%
1 424815 8.14%
2 131911 2.53%
3 58944 1.13%
4 37882 0.73%
5 20632 0.40%
6 18302 0.35%
7 12039 0.23%
8 11514 0.22%
9 9150 0.18%

10 7933 0.15%
>10 89420 1.71%
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Figure 2.9: Percentage of OpenPGP certificates with third-party signatures
greater than the specified amount (on 2018.11.15)) (Yakubov et al. 2020)

Many keys only certify one another, so not all of the 424 815 keys are reach-
able from each other: the graph’s strong set is comprised of only 60 000 certifi-
cates, this is, around 1.1% of the total number of those in keyserver storage.
This is, 99% of users of OpenPGP identities are unlikely to be able to benefit
from the WoT.

While discussing this point, it must be pointed out that by far not all of
the 5 million keys in the keyserver storage are in active use: the data set still
comprises 30 years of history, and it does include many expired, revoked, and
even valid-but-forgotten keys.

2.6.6 Certificate poisoning
Certificate poisoning attacks are special cases of what the two above subsections
present — paired with a more disruptive, malicious intent.

In July 2019, two keys have been reported to be poisoned in the SKS key-
server network, exploiting a weakness in the OpenPGP standard: it defines a
packet format in which signatures are simply padded to an existing certificate,
which only reach a limit when approaching 150,000 certifications. Client pro-
grams that implement OpenPGP are not able to handle this amount of data.
Two prominent people in the OpenPGP community, Robert J. Hansen and
Daniel Kahn Gillmor, have had their certificates suddenly certified by close to
150,000 throwaway identities. This means, attacked certificates, usually not big-
ger than a couple hundred kilobytes for very well-connected participants, have
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grown suddenly to tens of megabytes — a thousandfold increase (Hansen 2019).
When GnuPG (as well as other OpenPGP implementations) attempts to use

any poisoned key, it exhibits severe performance degradation, and might lead
to data corruption in its keystore (Kahn Gillmor 2019b).

2.7 Summary
This chapter presents the main concepts in the computing field that frame the
work this document presents. The main focus of this work is distributed trust
in identities asserted over an encrypted communication channel; thus, the first
topics presented are private and public key cryptography (Subsections 2.2.1
and 2.2.2). After establishing this, trust distribution models are presented:
the more common, centralized PKI-CA model (Subsection 2.3.1), followed by
the distributed Web-of-Trust model (Subsection 2.3.2. A third model, Trust
On First Use, albeit formally a trust assignment rather than trust distribution
model, is presented in Subsection 2.3.3. A short discussion on key distribution
follows, particularly centered in the HKP public keyserver network, as it is
central to the problem this work targets (Subsection 2.4.1).

In order to describe the attacks and mitigations trust models face over time,
it is deemed necessary to present the most common protocols that implement
the models presented so far. Thus, Subsection 2.5.1 introduces Transport Layer
Security, bases its trust on the PKI-CA model, and Subsection 2.5.2 presents
OpenPGP, the most widely deployed implementation of the WoT model.

The chapter finishes by discussing several inherent weaknesses and explicit
attacks, either on the trust models or on their main implementations. First, the
important aspect of user understanding is presented in Subsection 2.6.1; transi-
tive trust models deal after all with conveying trust information, and trusting a
system’s identity is a task that ultimately needs human responsibility, and if left
as a purely automated task yields sub-optimal results. Subsection 2.6.2 presents
several examples on how highly-trusted root-of-trust keys are leaked or stolen,
and how this has led to reshaping the PKI-CA ecosystem. 2.6.3 presents an
attack on the WoT model, where the common use of a weak certificate identifi-
cation method results in the ability of an attacker to easily create large sets of
lookalike certificates, granting the ability to fool a careless user. Subsection 2.6.4
presents an attack that, while not very important by itself and that could just
be considered a prank, made obvious the potential for abuse in the OpenPGP
and HKP protocols. Subsection 2.6.6 deals with the central problem this work
sets to work on: certificate poisoning, the upload of certificates bloated with
so many signatures they end up rendering affected keys unusable, and lead to
endangering the continuity of the HKP keyserver network.
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Chapter 3

Related work

As attacks on the WoT and on the keyserver network have surfaced, defenses
or mitigations have also been developed. This chapter presents other ideas to
solve the presented issues, highlighting their most important characteristics in
the specific problem space this work targets.

This chapter is structured as follows: Section 3.1 references to a full enuncia-
tive review of issues and strategies in OpenPGP keystores; Section 3.2 presents
works that recognize the problem in OpenPGP’s ecosystem in a fundamental
level, proposing instead alternative ways for public key distribution abandoning
the WoT for trust metrics, and embracing other mechanisms; Section 3.3 refers
to works that have searched for patterns or weaknesses on the full set of keys
present in the keyservers; Section 3.4 reviews implementations of keyservers
that, by changing specific aspects of a HKP keyserver while maintaining com-
patibility in others, become better equipped to resist or disable vulnerabilities
such as those outlined in Section 2.6; finally, Section 3.5 presents articles that
assume OpenPGP as a protocol fit for a threat model no longer valid 30 years af-
ter its introduction, and present threat models and cryptographic configurations
allegedly better suited for present-day communications.

3.1 Abuse-Resistant OpenPGP Keystores
A clear starting point for this chapter’s discussion is Kahn Gillmor 2019a. While
this cannot be seen as a finalized document, as it is presented as a RFC candidate
in the IETF in April 2019 and updated through five revisions, it has lapsed out
during the RFC process, so it remained as an expired draft since August 2019.
Nevertheless, it is the clearest work presenting a thorough review of the issues
keystores face nowadays, as well as different strategies to counter them.

The author begins by introducing the terminology to use, and states the
problem as follows (Kahn Gillmor 2019a, p. 5):

Many public keystores allow anyone to attach arbitrary data (in the
form of third-party certifications) to any certificate, bloating that
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certificate to the point of being impossible to effectively retrieve. For
example, some OpenPGP implementations simply refuse to process
certificates larger than a certain size.

This kind of Denial-of-Service attack makes it possible to make some-
one else’s certificate unretrievable from the keystore, preventing cer-
tificate discovery. It also makes it possible to swamp a certificate that
has been revoked, preventing certificate update, potentially leaving
the client of the keystore with the compromised certificate in an
unrevoked state locally.

Additionally, even without malice, OpenPGP certificates can poten-
tially grow without bound.

After the problem statement, this document addresses several ways in which
it can be mitigated: it begins with simple mitigations that can be implemented
upon receiving any new packet, based only on the structure of said packet;
progresses towards presents contextual mitigations, this is, packets might be
dropped from the keystore as new information is received (i.e. stored infor-
mation being superseded) or time passes (such as signatures expiring); it then
describes first-party-only keystores (allowing users only to use such a keystore
to make information on themselves available, not on third parties). It presents
the concept of First-party-attested Third-party Certifications (the keystore only
accepts third-party certification packets for a given key if they are signed off by
the affected key). Further sections address side effects on the OpenPGP tooling
and ecosystem of some of the presented ideas as they are currently implemented,
and some privacy considerations of publicly-accessible keystores.

It is worth emphasizing that this document is mereley enunciative of different
ways the stated problem could be tackled, but does not implement or analyze in
detail any of the presented alternatives. It is, however, a very valuable starting
point against which other analyzed works can be measured to.

3.2 Key discovery mechanisms
One of the main issues that lead to this work is the need for a robust key
discovery and distribution mechanism (described in Section 2.4). Other key
discovery and distribution methods devised to counter some of the problematic
characteristics of the public keyserver are now presented.

While the main goal of this work is to preserve the positive characteristics
of the public keyserver scheme, alternative distribution proposals deserve our
attention.

Proposals such as DNS-Based Authentication of Named Entities (DANE; see
Subsection 3.2.1) and Web Key Directory (WKD; see Subsection 3.2.2) can solve
several of the issues that WoT suffers, although they imply shifting the trust
model to the much laxer Trust On First Use (TOFU; see Subsection 3.2.3). This
strategy is adequate for some use cases, as presented by Koch and Walfield, but
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Section 2.3.3 discusses others where the stronger guarantees of a WoT model
are still required (Koch 2016; Walfield and Koch 2016).

Here we present some of the main implementations. The main properties
and mechanisms are described in Table 3.1

3.2.1 DNS-based Authentication of Named Entities (DANE)
for OpenPGP

As OpenPGP lacks a canonical lookup mechanism to securely obtain public
keys, the DANE proposal presents a method for publishing public keys as part
of the DNS records for the domain where a given mail address is hosted. DANE
is standardized for its use on the TLS protocol in RFC 6698 (Hoffman and
Schlyter 2012), and for OpenPGP in RFC 7929 (Wouters 2016).

The core logic behind this proposal is that a user A should search for a
user B’s public key not using the keyserver network (discussed in Subsection
2.4.1), but via a DNS lookup on B’s e-mail service provider. That is, if B’s
mail address is bob@example.org, the corresponding public key should be served
in a specific record by example.org ’s domain name server. Figure 3.1 shows an
example query on the gwolf@debian.org mail address.

Figure 3.1: Example DANE query for the TYPE61 DNS record with the public
key for gwolf@debian.org.

Wouters 2016 recognizes the size of the DNS records has been criticized as
too large. This critique is partly mitigated by striping away from the served sig-
nature all other user identities the key might have as well as all the certifications
it carries.

While DANE interoperates with unmodified, existing OpenPGP installations
and does solve the problem of poisoned certificates, it does so by ignoring and
eliminating the WoT altogether (as third party signatures are stripped from
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the served certificates). DANE tends heavily towards a centralized model: all
of the users for a given mail provider are required to send the keys to the site
administrators for them to assemble the needed information in the DNS zone
files. While this process can be automated, as is the case in the debian.org
example presented in Figure 3.1, it clearly leads to a single point of failure (as
well as a single point of potential censorship) for key discovery and distribution.
For users of massive mail providers such as gmail.com or hotmail.com, which
sums over half of all mail user globally (Gilbert 2021), it is plainly impossible
to get their keys published.

3.2.2 OpenPGP Web Key Directory (WKD)
The above mentioned proposal has the issue of practicity: DNS zone editing
to serve DANE records is beyond the abilities of many small service operators;
it is a centralized task to be done for each domain, and due to the opacity of
the changes made to the DNS zone configuration file, it can potentially lead to
service disruption in case of mistakes. Furthermore, DNS lookups are not en-
crypted, and a passive attacker sniffing network traffic can note which OpenPGP
keys are requested by which IP addresses, leading to privacy risks.

Koch 2021b proposes a key discovery method using encrypted HTTPS con-
nection. WKD is meant to be installed per domain on a stable, discoverable
URL: all keys belonging to users with mail addresses under the example.org
domain would be found under:

https://openpgpkey.example.org/.well-known/
openpgpkey/example.org/hu/

The mail address’ local part (the username at example.org) is specified
as the last component of this URL, after being case-normalized, hashed under
the SHA-1 algorithm, and encoded using Z-Base-32; for someuser@example.org,
the final part of this URL would be:

hfh6c7pfzr3uop5ne7qrdwj4uo6hr49p

Koch 2021b addresses key discovery, but –as is the case with Wouters 2016–
leans towards a TOFU scheme, and serves the keys stripped from certificates
altogether.

While Koch 2021b is mostly centralized, it includes sections on how users can
update their records via the Web Key Directory Update Protocol (presented as
part of the same work), enabling a more autonomous –although not decentral-
ized– operation.

Thus, while WKD addresses the main problem this work sets to (poisoned
certificates), it does so by ignoring the properties this work attempts to preserve:
fully decentralized operation of the Web of Trust.

Finally, while Koch 2021b is still an IETF Internet Draft and has not yet
reached standardization in the form of a numbered RFC document, at least a
dozen free software projects have adopted it (Gallagher 2021) — even projects
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such as Debian for which the Web of Trust is a much valued asset (Wolf and
Gallegos 2017). This is because using WKD allows for easier and better key
discoverability, while traditional keyserver-based operation is used for building
the WoT.

3.2.3 TOFU for OpenPGP
Although OpenPGP is built around the WoT trust distribution model, Wal-
field and Koch 2016 present an adequation of GnuPG, the leading OpenPGP
implementation, extending it to support a TOFU-based trust model in addi-
tion to the WoT. This proposal builds upon a previous proposal for TOFU for
browser-based TLS (PKI-CA) connections (Toth and Vlieg 2013) — not only as
a technical implementation, but deeply rooted in the study of human-computer
interaction and its relation to security decisions.

The authors state that the WoT’s utility remains limited, as it is “generally
unreasonable to set someone whom you have never met as a trusted introducer”.
Thus the WoT viewed as a pairwise authentication cannot be meaningfully
extended beyond two hops (this is, to authenticate friends of friends). “TOFU
clearly offers less theoretical protection than either an X.509-style PKI or the
WoT, however, it has the huge advantage that it does not rely on third parties
and requires very little user support. For many OpenPGP users (. . . ) TOFU
would provide significantly more protection in practice”.

Walfield and Koch’s proposal deals, thus, only with the key discovery part of
the problem this works sets to address; it is motivated by “the working assump-
tion that most connections are secure”, and presents an “asymptotic guarantee”
of talking with the desired party, since “the longer the user communicates with
the same party, the higher the chances the connection is safe”. The authors ar-
gue that “anecdotal evidence indicates that MitM attacks and forgeries are rare,
but communicating with new people is common”; this is, the identity does not
have to be trusted at its first use (as nothing backs the fact that it comes from
the right party — only that it does not appear not to come from them). Trust
in a given key belonging to the right user (a binding, as presented in this text)
is built over time, over reiterated communication. The attack model assumes
an active attacker attempting to perform a MitM attack is less likely to guess
the exact moment when the communication key is first downloaded.

This article is grounded not only on validating the security of the trust
model, but on studying user interaction patterns. As mentioned in Subsection
2.6.3, GnuPG and other programs implementing OpenPGP are seen as a staple
of bad user interface design (Whitten and J Doug Tygar 1999; Sheng et al. 2006;
Woo 2006; Ruoti et al. 2015). The authors go on detailing one of the weakest
points of the keyserver-based model of operation: given that OpenPGP user IDs
are “a free form UTF-8 string, which the OpenPGP specifications recommends
to be in the form of an RFC2822 mail name-addr” (Callas et al. 2007). They are
easily prone to forgeries: an attacker can create identities that look very similar
to a given user’s. This happens because “an attacker could take advantage of
the fact that what humans consider to be equivalent is less strict than what a
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computer considers to be equivalent. For instance, many people will indicate
that John Doe is the same identifier as John C. Doe”. A further refinement
on this attack is to use homographs — an attacker can register a mail address
containing glyphs in alphabets other than Latin that look very much or exactly
like a Latin character, fooling a user into using it. The authors delineate different
strategies to help detect and warn a user that a key is potentially forged: the
authors favor showing the user communication statistics whenever a key is used,
including warnings when the key in question is relatively new, or if it has not
been used in a very long time.

The focus of this work is on key discovery. It does not imply the WoT trust
model should be let go and replaced with TOFU, but it aims at presenting
TOFU as simpler and valid for most use cases. The authors explicitly mention
that “for those users for whom these defenses are not sufficient, TOFU is prob-
ably also not sufficient and they should instead be directly authenticating their
communication partners or using the WoT”.

Walfield and Koch do present the issue of not only checking whether a sig-
nature is valid or invalid, but of assigning a trust level to the known keys.
OpenPGP keys can be assigned trust levels, and a transitive trust rating can be
assigned i.e. following the algebra for assessing trust proposed by Jøsang 1999.
Given the use of a TOFU scheme, the authors propose trust policies based on:

1. Whether the binding is already known and has been used before

2. Detecting conflicts with other bindings (the presence of other keys for the
same user ID). The authors point out this does not mean an attack has
happened: it is customary for users to rotate their keys cross-signing them,
or to have multiple keys for different uses.

The paper concludes by stating that, while TOFU has a lower theoretical
protection than WoT, given the level of user support it requires, ends up offering
better practical protection, while keeping a decentralized operation much more
consistent with OpenPGP’s historical development than the centralized PKI-CA
model.

3.2.4 Autocrypt
The Autocrypt project (Kahn Gillmor 2021) has been born out of the need
to bridge the various e-mail encryption projects and usability: given the awful
usability record of mail encryption projects (Whitten and J Doug Tygar 1999;
Sheng et al. 2006; Woo 2006; Ruoti et al. 2015), the author realizes the funda-
mental use modes are wrong and should be rethought from the onset. Autocrypt
stems from the realization that it is unacceptable that security tools “are very
good, but not used because of their usability”. The project attempts to build a
cryptographic e-mail solution that “works for people who are not interested in
becoming cryptography experts”.

The act of adopting cryptographic e-mail tools does not concern a single
actor; it must be adopted by a whole social circle. Cryptographic learning work-

41



shops are doomed to fail, the author says, because a person cannot protect their
mail’s privacy without the rest of their circle doing the same. Autocrypt aims
at becoming a standard that multiple Mail User Agents (MUAs, mail clients)
can implement, adding extended headers to the mails for encryption to happen
automatically when enough information has been exchanged (opportunistic en-
cryption), and building upon the principles presented about the TOFU trust
model (see Subsection 3.2.3). Thus, Autocrypt addresses several shortcomings
leading to attacks on diferent parts of the OpenPGP ecosystem.

Autocrypt solves key discovery by including the sender’s public key in-band
as a header in all e-mail messages. It does not aim at protecting communications
against an active attacker that sends a forged first communication in order
for the recipient to fall for a hostile key, but it does protect against passive
adversaries (eavesdropping).

E-mail headers are leaky in nature: mails encrypted following the OpenPGP
standards leak enough metadata for a close user profile to be built. Encrypted
messages carry as clear text recipient lists (the To:, Cc:, Reply-To: headers),
a short clear-text summary (Subject:), even threading indication (References:,
In-reply-to:) and others. Autocrypt moves those headers (except for the un-
avoidable part, the explicit To: header for each given recipient) to the encrypted
part of the mail, but specifies that the MUA should present them as if they are
sent traditionally.

The author closes by emphasizing the user experience is as important as the
cryptography behind it: as it is the case with TOFU for OpenPGP, Autocrypt
proponents know it is less secure with the traditional OpenPGP way, but it
leads to many more people adopting encrypted mails as a standard way of
communicating.

3.2.5 ClaimChain
Autocrypt serves already as the basis for other projects. Addressing some weak
aspects of the Autocrypt proposal, Kulynych et al. 2018 aims at assuring the
integrity and authenticity of a identity-key binding. It does so by adding infor-
mation on the keys of neighbor keys to build a WoT, supported by an authenti-
cated blockchain-like ledger to ensure, in a decentralized way, that all relevant
identities are presented upon key exchange, but in a privacy preserving way:
social connections cannot be inferred for each user.

Key certifications in this proposal are termed claims, and each user builds
a chain-of-blocks structure (based on unique-resolution key-value Merkle tree)
to be sent with each message including their claims. The main contribution of
ClaimChain is that claims are encrypted and leak no information that could
lead to create a graph of social links between users, strengthening privacy in
comparison to the keyserver-provided WoT scheme. Claims are linked to ca-
pabilities, determining which actors (using their private keys) can verify which
claims, allowing the controlling user to present the social graph subset needed
to validate a fraction of the WoT to specific people.

ClaimChain is designed to perform in-band key distribution, this is, the

42



public key and its related claims are to be attached (i.e. as headers) to en-
crypted messages. This naturally increases the size of each exchanged message,
but allows for a truly decentralized operation (no servers other than the mail
exchanges are required for the scheme to be effective). The authors show that,
after a simulated network with 10 000 mails exchanged, the required bandwidth
per message is under 30KB, the total self-storage (local storage of each user’s
own ClaimChain blocks) is under 50KB, and the gossip storage (space used by
information received from other users) is under 2MB.

The authors propose this system to be used with opportunistic encryp-
tion, showing through simulation its use over the publicly available Enron mail
database, in which over 66% of the exchanged mails are encrypted after 10 000
messages.

The article presents a comparison table with other key distribution systems,
reproduced here as Table 3.2.

Table 3.2: Comparison of key distribution systems from an end-user perspective.
Social graph visibility : who learns the user’s social graph; Active attack detection:
whether active attacks by malicious providers, users, and network adversaries can
be detected; Total key availability : guarantee that recipients’ current encryption
keys are always available to senders; n: number of users; s: number of sent
messages; r: number of received messages; b: maximum total number of contacts
of any user after s sent and r received messages (Kulynych et al. 2018).

In-band
PGP

SKS
keyserv.

CONIKS Keybase Namecoin ClaimChain

Social graph visi-
bility

E-mail
provider

Public Provider Public Public Authorized
readers

Active attack de-
tection

% % !‡ !‡ !‡ !

Total key avail-
ability

% ! ! ! ! %

Sending band-
width, O(·)

s · b s · b2 s · b ·
log(n)†

s · b · (b +

log(n))†
s · b · (b +

log(n))†
s · b2 · log(b)

Receiving band-
width, O(·)

r · b r · b r · log(n)† r · (b +

log(n))†
r · (b +

log(n))†
r · b2 · log(b)

Local storage,
O(·)

b2 b2 b+ log(n) b2 b2 r · b2 · log(b)

† Without costs for auditing the transparency log / verifying blockchain history
‡ Requires global consensus on system’s state

Finally, while the argument for ClaimChain is built with OpenPGP as the
target implementation, the semantics for the exchanged chains are completely
different from what is covered by the OpenPGP standard. So its adoption would
require a compatibility layer.

3.3 Analysis on the full keyserver data set
The append-only set of keys served and maintained by the OpenPGP keyservers
consists, as of this writing, of more than six million keys, each of them including
all of the certificates on them, and totalling over 20 gigabytes of raw data and
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representing 30 years of OpenPGP history. This data set has sparked several
research papers. This section presents most relevant papers for this work.

3.3.1 Search for key weaknesses
The work by Böck 2015 starts from the fact that “keyservers operate on an add
only basis”, and take on searching in the full data set for well known crypto-
graphic weaknesses and similar vulnerabilities.

Böck’s work is succinct, and presents only two issues searched throughout
the keyserver database: a vulnerability in the DSA and ECDSA algorithms upon
duplicate k values, where the random factor k, assumed to be globally unique,
can be used to aid an attacker into calculating the private key, and an attack
on the RSA algorithm where, given distinct keys that share the N modulus, a
batch GCD algorithm can be used –again– to attack many keys in parallel.

While attacking cryptographic algorithms is outside the scope of this work,
Böck’s paper is relevant because some of the problems it reports in the key-
server data. Quoting from the paper, the author describes how key certificates
(signatures) can be searched massively for the DSA vulnerability (Böck 2015):

Therefore searching for duplicate r values in DSA signatures seems
like a worthwile idea. The key server data contains different kinds
of signatures that can all be tested. (. . . ) Having all the values in a
database allows us searching for duplicate values via MySQL:

(. . . )

This query will give around 350 results. However, when trying to
calculate the private keys, it turns out most of these results aren’t
real signatures. They are merely copies of other signatures with
data errors in them. This is generally something that needs to be
considered when working with the key server data: the key servers
don’t check the correctness of the data submitted.

A similar finding is reported when attempting the RSA attack: most of the
results the tool reports are faulty keys.

Finding the amount of invalid key data in the keyserver network is the most
relevant issue for this work: current keyservers store the arbitrary information
they receive, without validating it at all, increasing the likelihood of somebody
uploading codified illegal content as described in Subsection 2.6.4.

3.3.2 Threat models to jeopardize the WoT functionality
Barenghi et al. 2015 presents “a practical threat model, aiming at invalidating
the public key authentication mechanism provided by OpenPGP, on the basis
of a broken keypair either directly or indirectly authenticated by a trustworthy
user”, as well as how this threat model applies to the real-world data in the
keyserver network.
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The authors start by presenting structural and statistical features of the WoT
and its strong set (the “maximally connected subgraph where there is at least
one key path between every node pair”). When this text has been written, the
total amount of certificates in the keyserver network is been above 3.5 million,
but the strong set has been composed of only close to 60000 certificates. The
authors detail the strong set as having a maximum graph diameter of 27 hops,
with 38.7% of all distances smaller or equal to 5. Given a positive integer r and
an arbitrary node of the WoT n, they define the r-certified set of n as the “set
of nodes reachable from n via a valid certifier-certified chain of length shorter
or equal to r”.

Given the total WoT can be pruned by specifying maximum values for r,
they present the following threat model: an attacker E exploits cryptographic
weaknesses in a preexisting key T in the strong set, to fool a user A into trusting
a fake identity for their desired communications target B by injecting certificates
from T .

Two threat models are presented: compromising a fully trusted certificate
(this is, when A already trusts T with a full trust level) and compromising a
key verified (certified) by a fully trusted certificate (A does not yet trust T , but
trusts I with a full trust level, and I trusts T with this same trust level). In
both cases, E is able to inject a certificate from T to their desired fake identity
B′, impersonating B.

Now, subverting cryptographic weaknesses in preexisting keys is not an easy
feat. In the section titled State of Health of the OpenPGP Global Keyring, the
authors analyzed the data set for known weaknesses:

Outdated RSA key sizes As hardware becomes faster, key sizes that were
once secure and recommended for long-term use are now easy to break.
OpenPGP supports 512- and 768-bit RSA keys, and the authors point
out the practical feasibility of finding the prime factors for 768-bit keys
(Kleinjung et al. 2010). We document large projects phasing out 1024-bit
keys because of these same concerns (Wolf and Gallegos 2017). There are
over 11,000 certificates for keys up to 768 bits in the keyservers, and only
10% of them have been revoked.

Prime RSA modulus If the chosen modulus N of a RSA key is prime, ϕ(N)
can be trivially computed as ϕ(N) = N −1. Only one such key was found
in the keyservers, and while it is not part of the strong set, it is signed by
one of its members.

Common primes in RSA keys Given two key moduli n = pq and n′ = p′q′,
if one of their factors is the same (p = p′), it is relatively efficient to
compute both of them. Given the amount of weak keys found by Heninger
et al. 2012, the authors expected many keys to be affected by this issue,
but only two were found; the authors attribute this to the good PRNG
implementations used in the OpenPGP implementations. The scan for
this vulnerability did discover 253 keys with nonprime factors, and the
affected keys are not valid.
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ElGamal with small random integer l The ElGamal cryptosystem has been
mostly superseded due to it having similar strength and a significant larger
output size than DSA. A issue was found with GPG’s implementation of
ElGamal (Nguyen 2004): l should be an unpredictable random integer of
the same bit-size as p; usual values for 1024-bit keys are p ≥ 21024 and
q ≥ 2160. For efficiency reasons, GPG generated DSA keys with l in the
bitsize range of q instead, which allows to recover the private key of af-
fected ElGamal keys with minimal effort. Over 1200 unrevoked ElGamal
keys are part of the WoT.

MD5-based signatures The MD5 hashing algorithm was long used as a hash-
ing algorithm, but it was proven to be vulnerable to prefix-based collision
attacks (Stevens et al. 2009). Despite it being explicitly discouraged in
the standard defining OpenPGP (Callas et al. 2007), over 115,000 older
certificates can still be compromised (and, thus, used for attacks) using
this mechanism, and almost 4% of them are reachable from the strong set.

3.4 Improvements over the HKP keyserver net-
work

The keyserver model, as well as the Gossip protocol that enables it to be feder-
ated, have been organically created and adopted. That is, an implementation
is put forward, and as it solves an existing problem well enough, it is adopted.

This is not to say they were adopted with no thought or analysis, but possibly
new ideas prompt answers better suited to the weaknesses ail the ecosystem.
This section explores several such ideas.

3.4.1 BlockPGP: a Blockchain-based Framework for PGP
Key Servers

Yakubov et al. 2020 identify the problem of the propagation time a revoca-
tion certificate takes to be propagated across the HKP keyserver network as a
relevant isssue. Given the likeness of some of the SKS keyserver network’s prop-
erties to a blockchain, mostly the fact that both are, effectively, a distributed,
append-only transaction ledger, adopting a smart-contracts-capable blockchain
(particularly, a private implementation of Ethereum) as the backing store for
the OpenPGP WoT.

The authors refer to the log-based PKI approach presented to address the
same problem in the PKI-CA model: the use of highly-available public log
servers to monitor and publish certificates, aiding in any CA misbehavior, being
the most widely deployed one Google’s Certificate Transparency (CT) (Laurie,
Langley, and Kasper 2013). Although public logs do help counter issues such as
those outlined in Subsection 2.6.2, risks such as MitM attacks are still present
in log-based PKIs, and their support for revocation and error handling can still
be furthered (Matsumoto, Szalachowski, and Perrig 2015).
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Yakubov et al. 2020 lists the following as the main issues in order to trust
the current PGP key servers infrastructure:

PGP key servers should become more trustworthy The OpenPGP HKP
protocol description itself notes that key servers are not to be taken as au-
thoritative and trusted, and all certificates should be checked by interested
users. It is trivial –as Subsection 2.6.3 shows– to upload fake key pairs,
and it is up to each user to validate whether the trust path to any given
key is to be trusted.

Man-in-the-middle risk The authors claim that, given communication be-
tween clients and the keyserver network is often done over encrypted (TLS)
channels, any breach such as the examples presented in Subsection 2.6.2
would lead OpenPGP data integrity to depend on the PKI-CA model.

Key server synchronization delays A revocation certificate published to a
given OpenPGP keyserver can take 15 to 30 hours to reach the full key-
server network, opening an important vulnerability window.

Some key servers are not active Many of the servers in the keyserver net-
work are not kept as up to date as they should, often presenting delays of
several days to synchronize with their peers. Said delays increase the risk
of downloading compromised or revoked certificates as valid.

The authors point out that, due to the nature of the key synchronization
protocol, the gossip exchange is based on the full key storage and not on the
loading timestamp. So it is impossible to remove certificates, as explained in
Subsection 2.6.4. Similar semantics could be reached by using a blockchain-
based implementation — focusing particularly on decentralization, persistence
and auditability. They present an adequation of the Hockeypuck OpenPGP
keyserver program using an Ethereum-based blockchain (using an independent
blockchain, not linked to the homonym cryptocoin) to synchronize, taking ad-
vantage of smart contracts for key validation, and using Proof-of-Authority con-
sensus algorithm. This leads to an implementation much lighter in computa-
tional terms than the blockchains used for crypto currencies.

By switching the synchronization protocol to a blockchain implementation,
they achieved consensus formation in a matter of two minutes (eight blocks, with
block formation time at 15 seconds, as implemented in the Ethereum blockchain)
in contrast with up to 30 hours. Inactive key servers can be easily detected and
brought up to speed by checking the latest block number they carry.

The authors suggest using a blockchain based on Ethereum, but on a sep-
arate instance (not sharing the node set the eponymous cryptocoin uses). The
reason for this is threefold: a) using Proof-of-Authority consensus (PoA) con-
sensus, where transactions can be done by any authorized nodes, instead of
Ethereum’s miner-based Proof-of-Work (PoW) consensus; b) avoiding the need
to download Ethereum’s public blockchain for a keyserver to start operating,
which as of 2020 amounted to 125GB, where the proposed blockchain needs only
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to hold keyserver-related data; c) taking part of the public Ethereum blockchain
requires paying fees for loading data to the blockchain and pulicly distributing
it. OpenPGP operation should continue to be free of such fees, reling only on
the infrastructure the operator community is willing to donate.

The Ethereum network requires transactions to be linked to a user account.
The authors implement this by using the Comments: field in the OpenPGP
specification. They present it as a further opportunity to thwart attacks: the
keyserver history would no longer be an unauthenticated, inalterable, append-
only log, but being user account identification possible, it allows for searching,
scrutinizing, and filtering out all actions by a given malicious actor. The authors
ponder the existence of an administrator account that, while it is antithetical
to the decentralized philosophy of the OpenPGP network, can allow for alter-
ation of all nodes. They mention this account is active in the proof-of-concept
implementation, which can be disabled in a future production version.

The authors’ implementation, based on a modified Hockeypuck keyserver,
implies additional restrictions in contrast with SKS operation. Most important,
an introducer that signs a certificate cannot upload it to a key server without
the certificate holder’s acceptance. This change in behavior by itself limits the
ability of an attacker to poison certificates.

3.4.2 The PEAKS keyserver
The thesis by Pini 2018 presents a implementation of a new keyserver, Peaks,
designed to be interoperable with the SKS keyserver network. Pini’s work is tu-
tored by Alessandro Barenghi, and starts from the work described in Subsection
3.3.2.

Pini’s proposed keyserver differs from other implementations in that it key
material is not stored as a binary blob, but is analyzed according to the OpenPGP
standard. Its constituent parts are individually stored in a MySQL relational
database system, to “handle better the amount of data using a relational database,
be better updated and maintained, and verify that certificates have no security
issues” (Pini 2018, p. 36).

This work presents not only a full, clearly explained listing of classes and
exceptions for PEAKS throughout its Chapter 2, but a thorough recap of the
Gossip protocol, detailing in Section 1.3 important parts of its implementations
mathematically, as pseudocode, and as protocol diagrams.

The full database scheme comprises 11 tables (shown in Figure 3.2), in which
the key and certificate structure is “exploded” and allows for an easier analysis,
such as the statistical analysis presented in Pini 2018, Chapter 3. It is worth
noting that all of the information received by the Gossip protocol are stored as
raw data in the certificate column of the gpg_keyserver table, as otherwise,
future Gossip runs would pull them back again; its is_unpacked column
denotes whether it was successful unpacking and analyzing the information.

While information received by Gossip exchanges must be accepted, PEAKS
does perform sanity validations of the key data submitted directly to it, rejecting
non-RFC4880-conforming data.
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Figure 3.2: Database diagram for the PEAKS keyserver (Pini 2018)
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The analyzer component of PEAKS includes a parameterized list of security
checks, clearly inspired by Barenghi et al. 2015, including the various items
mentioned in Subsection 3.3.2.

While by empirical means it does not seem PEAKS systems are online and
participating in the SKS keyserver network, this work carries a strong contribu-
tion in it being used for a transversal analysis of the full key set of the keyserver
network. Finally, 22 figures and 3 tables are presented, providing an overview
of the health of the keys present throughout time (Pini 2018, p. 61–78). Partic-
ularly, Figure 3.10 presents the amount of vulnerable RSA keys due to different
factors, and as shown in Figure 3.3. The Evil32 key set in 2014 (discussed
in Subsection 2.6.3) has been created optimizing for speed in keypair creation,
incurring in CommonFactor and OutdatedKeySize vulnerabilities.

Figure 3.3: Vulnerable RSA keys, noting their vulnerability cause, created over
the years (Pini 2018).

3.4.3 Keyserver synchronization without prior context
Rucker 2017 presents an implementation of a synchronizing keyserver using a
gossip protocol lighter than the protocol used by the interoperating SKS and
Hockeypuck keyservers (Y. M. Minsky 2002), and using Invertible Bloom Filters
(Eppstein et al. 2011). The main contribution for this work lies in that this
Invertible Bloom Filter estimates small differences, meaning that servers can
more frequently poll each other to check for updates without requesting a large
amount of data, and placing an emphasis on minimizing computation overhead.

The proposed keyserver supports an API compatible with HKP, extending
it with the /ibf and /strata points for the Invertible Bloom Filters and the
set-difference estimator functionality.

In contrast with the PEAKS keyserver surveyed in 3.4.2, for simplicity sake
(and stating that clients must perform their validation anyway), Rucker explic-
itly does not attempt to perform key data validation other than verifying data
consists of valid packets (which limits the abilty to upload random data), and
keys are required to be at least PGPv4.
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Said claims are backed with benchmarks for the keyserver. Key searches,
which take close to a tenth of a second to be answered “have a very poor response
time (. . . ) due to an unoptimized index that requires every search to scan the
list of all keys”. Several strategies for improving this are suggested. Other than
that, set synchronizations can be executed in the order of tens of thousands of
requests per second.

A synchronization frequency between keyservers of once per minute is sug-
gested based on this study. If the keyservers have no differences, the minimum
data exchange is of just 4KB. The synchronization overhead for the bloom filter
increases linearly in the number of keys to be synchronized, and the increase on
the set difference estimator overhead is roughly logarithmic.

3.4.4 keys.openpgp.org and Hagrid, Keeper of Keys
Lee 2019 presents a non-formal paper in which he presents the keyserver sit-
uation as beyond a point of no return. He starts the article by stating, “The
SKS keyserver network is dying. This has been a long time coming”, stating
certificate poisoning as the nail in SKS’s coffin.

Lee is the author of the first widely-known implementation that used OpenPGP
signatures to store arbitrary data creating a graffiti of sorts (as detailed in Sub-
section 2.6.4), and claiming the SKS developers to have neglected patches he
offered for critical vulnerabilities for over five years.

The author points out that “three prominent software projects in the PGP
ecosystem (Sequoia-PGP, OpenKeychain, and Enigmail) collectively run the
Hagrid server keys.openpgp.org”.

Hagrid is a reimplementation of a keyserver as part of the Sequoia OpenPGP
project, with several fundamental differences regarding other keyservers. Quot-
ing from Lee 2019:

• It’s a central service that isn’t federated and doesn’t sync with
other keyservers. They plan to decentralize it at some point,
but the federated Hagrid servers will never be badly-run hobby
projects like SKS keyservers sometimes are.

• Anyone can upload public keys, but Hagrid strips all user IDs,
signatures, and everything else from them. Only the crypto-
graphic key material, like the numbers required to encrypt a
message to the public key, or a revocation certificate, is freely
distributed.

• If a user wants their user ID (their name and email address)
to be published, the user needs to prove ownership over the
email address using double opt-in validation – Hagrid will send
a verification email, and the user must click a link in the email.

• Because signatures are stripped, Hagrid cannot be used to fa-
cilitate the web of trust. If you sign someone’s key and want
others to know that you signed it, you’ll need to find some other
way to distribute that signed public key to those people.
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The Hagrid keyserver’s website explains its main strategies (Sequoia Project
2022). Besides being non-federated and able to act on key material without
involving Gossip synchronization, key information is minified and limited in
scope: it does not distribute third party signatures (transitive trust certificates),
quoting certificate poisoning (“attaching so many megabytes of bloat to a key
that it becomes practically unusable”). The Sequoia developers recognize there
is value in distributing a WoT. They present ideas such as attaching signatures
to the signer key instead of doing so to the signed key, but wrap up by stating
that “the keys.openpgp.org service is meant for key distribution and discovery,
not as a de facto certification authority”.

This means that, while the Hagrid keyserver does counter the certificate
poisoning attacks, it is achieved partly by disabling decentralized operation,
and partly by disabling transitive trust handling. And although the author
mentions that they “plan to decentralize it at some point”, the implementation
currently available is designed and meant to disable this operation mode deemed
fundamental for this work.

Górny 2019 points out that Hagrid-based keyservers also fail to implement
UID revocations, detailing some ways where e-mail accounts that get compro-
mised are not able to be removed from the server, presenting a new venue for
MitM attacks. Górny also highlights use cases where UIDs that do not have
an associated e-mail address, or where a given e-mail address is shared between
various users cannot be represented.

It is worth mentioning that, even though this section is based in published
communications, as of January 2021 (commit 39c0e12), Hagrid accepts third
party signatures including the management of key attestations (the core com-
ponent of this work, to be described in Section 4.2) as part of the certificates it
serves. The authors still maintain that Sequoia is not meant to work as a feder-
ated service as a part of the SKS keyserver network, but as a centrally-managed
service.

3.4.5 Efficient and private certificate updates
Among the recommended best practices for OpenPGP is frequently updating
the local keyring, this is, the locally available set of keys with which said user
interacts, thus importing certificate updates and revocations. Mueller 2020
addresses this operation, targeting two main issues:

Efficiency Whenever a user requests the update of their local certificates database,
they have to download all of the keys the user has registered, as there is
no way of knowing whether a key is updated, other than downloading its
latest version and fully importing it

Privacy Whenever a key update happens, said user reveals their full contacts
network to the keyserver.

The author presents an experimental study of the size and frequency of
OpenPGP certificate updates, finding that over a one year period, each cer-
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tificate has a probability of 0.062% of having been updated — of course, the
distribution of key activity is far from homogeneous, and regular OpenPGP
users find their contacts in particular update their keys with a much higher
probability.

The article points out that, in order to preserve privacy, the server could
send key prefixes only, achieving k-anonymity (this is, allowing the client to
fetch certificates in a way it divulges no more than the k neighboring keys), with
a recommendation of k = 5. This value comes from the theoretical observation
that the size of the anonymity set (k) is determined by the total number of
certificates (C) and the length of the prefix (in bits, l):

k =
|C|
2l

k change over time, as the list of keys in the server’s set grows. As per the
data analyzed in the article (sampled in June 2020), neighboring keys with sizes
≥ 5 could be picked by requesting keys by prefix. 17-bit prefixes form 217 sets
of between 13 and 66 keys each (averaging 36), which is the most adequate to
guarantee the sought k-anonymity with k = 5.

It should be noted that, while this approach addresses anonymity issues, it
goes counter to the other stated goal of this thesis: efficiency. The amount of
keys a user has to download to perform a local keyring update grows by an order
of magnitude.

As for efficiency, the author immediately dismisses the use of HTTP’s caching
mechanism (via either the ETags or the If-Modified-Since headers) as they would
be susceptible to tracking with great precision.

The author proposes that the server maintains a list of certificates that
have changed since the last update, with granularity of days. Combining both
approaches, clients can –based on the size of their local certificates database–
query the server for updates on given prefixes, giving the server some bits instead
of the full key signature as discussed above, resulting in the exchange depicted
in Figure 3.4.

This still exposes a trivially enumerable list of certificates that have received
updates since a given time period. The author suggests presenting the results of
this prefix search as a a Bloom filter, as it obfuscates the elements it contains,
and it presents the attractive ability to trivially merge two filters.

3.5 Moving away from OpenPGP
Several proposals start by asserting that, given PGP’s age and the fact it has
been built to be used in a network so different from current-day Internet, this
obsoletes the threat model that OpenPGP sets to solve. Hence, the only way
to offer secure person-to-person communication –at least for specific use cases–
is to leave OpenPGP behind and switch to a newer encrypted communications
system altogether.
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Figure 3.4: List-based certificate retrieval protocol, as proposed by Mueller 2020

3.5.1 Off-the-Record Communication
Already by 2004, Borisov, Goldberg, and Brewer 2004 note that one of the main
weaknesses in the OpenPGP model is structural: the privacy expectations for
OpenPGP communications rely on either the exchanged messages being kept
forever secure, or the private keys for both parties for a given communication
to never be “leaked”, by carelessness or as a result of an attack. Their work has,
from the very onset, a very provocative title (Off-the-Record Communication, or,
Why Not To Use PGP). So it is naturally expected it would address perceived
shortcomings in OpenPGP’s threat model.

The authors present a communications protocol presented under the Off-
the-Record (OTR) name, mainly targeting Instant Messenger (IM) applications.
The security expectations set by the authors mimic those found in casual social
communications: OTR’s communication model follows more that of two par-
ties informally talking in person, rather than epistolary communications. OTR
does provide assurance to every communications party A that they are com-
municating with the right, off-band authenticated party B, and encrypts all of
the communication between A and B. Even if an eavesdropper E records all
of their communication –and even if E gets hold of A or B’s master encryption
key material– they are not able to retrieve the communications’ contents. Of
course, neither do A or B — just like in a regular, non-eavesdropped informal
talk, words are gone once spoken.

OTR builds on perfect forward secrecy by using very short-lived encryp-
tion keys, generated after each message exchange (or at most every minute,
for very low-powered devices) using the Diffie-Hellman key agreement protocol
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on random values. Contrary to most cryptographic uses, OTR does not offer
non-repudiation. Much to the contrary, it goes out of the way to achieve repu-
diability: while the Diffie-Hellman exchanges are protected by digital signatures
and individual exchanged messages are signed by message authentication codes
(MAC), after-the-fact attackers are not able to prove A is the author of mA

even having MAC(A,mA). This because, after the ephemeral session keys are
rotated, the protocol mandates A and B to reveal their past MAC keys. If an
attacker E gets a copy of the session, E does not get the necessary keys to forge
the logged messages. In fact voiding any proof of the messages being originated
from any given party.

All in all, Borisov, Goldberg, and Brewer 2004 present a very –at the time–
novel way of bringing secure encryption to a communication media very different
from what OpenPGP sets to do. Throughout the text, they reason about an
interactive protocol where a steady stream of messages is encrypted using OTR
to provide the security guarantees here described. Their Section 6 addresses
how to apply OTR’s principles to high-latency communications such as e-mail.
Given there is no communication initialization phase and assuming both parties
of an exchange to be online is often unfeasible, they suggest the use of ring
signatures. Although repudiability guarantees would be lower than with the
low-latency proposed protocol. The authors finish by acknowledging OTR is
not as well suited for e-mail due to its high latency, but reiterates that user’
communications are still more private than if they had used PGP or S/MIME
(Borisov, Goldberg, and Brewer 2004).

3.5.2 Assessing OpenPGP itself: hints of deeper issues
Halpin 2020 presents a series of weaknesses and possible attacks based on weak-
nesses on OpenPGP stemming, not just from implementation details, but on
its design decisions and architecture. It starts by detailing several such weak-
nesses, following a OpenPGP’s history. The weaknesses are presented according
to their origin:

1. Design issues in OpenPGP : Design choices that have been sensible when
PGP is invented and first standardized, between 1991 and 1997, but do
not make sense in terms of modern cryptographic protocol design.

(a) Message compression: When OpenPGP has been devised, it is con-
sidered good practice to compress a message before encrypting it, and
it is so specified in the standard, as scan be seen in Figure 3.5. Years
later, it has been shown that compression can lead to attacks on en-
crypted data as information about plaintext entropy can be gained
from the information leaked by the compressed length (Kelsey 2002).

(b) Sign-then-encrypt : OpenPGP specifies a message should be signed
first, and the result be encrypted, as Figure 3.5 shows. As a result,
there is no knowledge of the intended recipient at signature creation
time, and an attacker can take an encrypted message, decrypt it,
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Figure 3.5: General format of a OpenPGP message sent by Alice to Bob (J.
Wang and Kissel 2015, p. 193)
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and encrypt to another arbitrary key. The original signature remains
valid, allowing for surreptitious forwarding attacks.

(c) Unauthenticated headers: OpenPGP is often used for e-mail-based
communications. When a message is encrypted and sent, the en-
cryption does not include the mail headers (mainly used for mes-
sage delivery, but also to convey different metadata on the message).
There are several implementations leading to exposing less headers
to cleartext exposition or tampering, such as Autocrypt (described
in Subsection 3.2.4), but few mail clients have adopted them.

2. Attacks on PGP : The following are attacks on specific pieces of OpenPGP
infrastructure, not necessarily inherent to the whole PGP ecosystem.

(a) Protocol attacks: Attacks on the cryptographic results derived from
the behaviors specified in the OpenPGP standard are well known. At-
tacks derived from deliberately sending corrupted ciphertext, expect-
ing the user to return quoting the portion they are able to read (thus
acting unwittingly as a decryption oracle), lead to chosen-ciphertext
attacks that have been shown to be able to break the encryption
scheme (Jallad, Katz, and Schneier 2002).
The authors note other protocol attacks, but note they are success-
fully mitigated in current implementations.

(b) Client attacks: OpenPGP messages are often processed and displayed
to the user via e-mail clients. Upon PGP’s first release, e-mail con-
sisted exclusively of static text. Over the years, messages are usually
be sent as HTML content, which can include styling information via
CSS and active content via JavaScript. Given that OpenPGP can
be applied to some (and not necessarily all) of the MIME compo-
nents of a mail, it has been shown that an attacker can capture a
valid, encrypted OpenPGP message, attach it to a clear-text HTML
part, and once the message has been decrypted and shown to the
user, exfiltrate the encrypted component via JavaScript to a network
resource controlled by the attacker (Poddebniak et al. 2018).
The authors mention other examples of attacks on composition of
multipart MIME messages where OpenPGP signs some (but not all)
of the MIME parts. Many e-mail clients present unclear messages
where the user might be confused as to which parts of the content
are PGP-signed and which are sent as clear-text.

(c) Key management attacks: Finally, this category presents attacks on
the way key material is relayed between valid OpenPGP users. The
author identifies three critical flaws in the design of keyservers: a) No
requirement for key IDs and user IDs to be unique, which leads to
attacks such as Evil32 (presented in Subsection 2.6.3); b) No authen-
tication used by keyservers, so anybody can update a key claiming to
be anyone, effectively opening a window for impersonation, as well
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as for certificate poisoning; c) Key verification is in theory done via
a WoT, with trust values to be interpreted by each user, effectively
forming a “small world” network. Given that user key material in
keyservers is public, this social graph of trust reveals the personal
data of every user’s WoT is public, which goes against any reason-
able modern-day privacy expectations.

The author devotes a section to covering Autocrypt (reviewed in Subsection
3.2.4), as it acknowledges most of OpenPGP’s issues “are not cryptographic at-
tacks on PGP itself, but primarily due to OpenPGP’s interaction with a wider
and mostly under-specified infrastructure” (Halpin 2020). This is again done
citing the historical context of the attempts to update RFC4880 by the IETF
community. While Halpin acknowledges value in the improvements brought for-
ward on OpenPGP brought forward by the Autocrypt project, he points out
several underlying weaknesses are still present, particularly lack of authenti-
cation and header spoofing. Specific mention is also made of the TOFU op-
eration (see Subsections 2.3.3 and 3.2.3) for opportunistic encryption used by
Autocrypt: “The danger is that users believe their messages are confidential and
even authenticated, when they are indeed not. Although the alternatives like
Signal are centralized, they are likely more secure and in line with modern user
expectations. Opportunistic encryption does simply not provide the certainty
needed by many users about their communication” (Halpin 2020).

The author wraps up by reevaluating whether OpenPGP can be fixed, or if
it should be deprecated in favor of newer encryption mechanisms. Most of the
problems identified in OpenPGP come from its lack of authenticated encryp-
tion. There are IETF working groups working in per-message authenticated
encryption with associated data (AEAD).

The author mentions that “decentralized public key infrastructure is an open
research problem, both in terms of cryptography and usability. The usability
of keys is the root usability problem of PGP, and without a breakthrough, new
standards will not fix this unless keys are managed on behalf of the user — which
goes against the values of decentralization and user control” (Halpin 2020).

3.6 Summary
Throughout this chapter we have presented a review of other works that tar-
get different weaknesses and vulnerabilities present in OpenPGP keystores and
keyservers.

The IETF draft presented in Section 3.1, presented few weeks before certifi-
cate poisoning comes to light, outlines several possible mitigations and redesign
ideas that could help implementing abuse-resistant keystores. One of the ideas
enunciated by this document is First-party-attested Third-party Certifications,
which has been chosen as the core of the present thesis.

Section 3.2 presents five different proposals for key discovery constituting al-
ternatives to public keyservers. The five alternatives discussed through the sec-

58



tion –DANE, WKD, TOFU for OpenPGP, Autocrypt and ClaimChain– present
different ways of relaying public key information to parties interested in initiat-
ing communications. They all, however, do so by reducing the role played by
a public decentralized WoT. The presented proposals are all viable and valid;
particularly the first three are deployed and standardized. However, the present
work is carried out aiming at preserve the full decentralization and the value of
social cross-certification that constitutes the WoT, as explained in Section 2.3.

Section 3.3 reviews two works that study the full set of keys. Subsection
3.3.1 goes over the full public keyserver set of keys, reporting on vulnerable key
algorithms used, weak parameters employed for seeding the keys, finding invalid
data stored as part of key material, or similar issues. Subsection 3.3.2 searches
for broken key material in the keyserver database in the hopes of finding the
probability for either weak keys in the strong set that are easy to compromise
based on a list of known weaknesses.

Section 3.4 presents five texts that propose replacing the HKP keyserver
network in order to ensure its better operation and not have it fall for the
weaknesses of its current model. Subsection 3.4.1 presents a blockchain imple-
mentation aimed at preserving all decentralization attributes of HKP keyservers,
but ends up introducing an administrator account for the blockchain that in-
troduces centralization. Subsection 3.4.2 presents an alternative keyserver, al-
legedly compatible with the keyserver network, but that validates all of its key
material, storing and re-assembling it in a database that allows for better and
fuller analysis of several facts. The work presented in Subsection 3.4.3 puts
forward an alternative synchronization method, using Invertible Bloom Filters,
which carry less overhead and would allow a higher synchronization frequency
between servers, reducing the window of opportunity an attacker can have be-
fore a fact reaches the whole network (i.e. a certificate revocation) is published
by a user. Subsection 3.4.4 presents Sequoia’s Hagrid, a validating keyserver,
while promoting the virtues of a centrally administered service consisting only
by verified, valid data. Subsection 3.4.5 presents the case for privacy in certifi-
cate updates, by proposing that certificate updates carried out by client software
request a set of key prefixes instead of individual keys, to ensure personal social
data is not yielded to keyserver operators to track.

Finally, Section 3.5 reviews two works that propose completely migrating
way from OpenPGP to other private communication protocols better suited for
today’s social and technical requirements, presenting how the privacy require-
ments around which OpenPGP was designed do not hold for many ways of
communication, and why many of OpenPGP tools’ usability shortcomings are
its direct consequence.
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Chapter 4

A proposal for a
certificate-poisoning-resistant
protocol

This chapter presents the proposed First-Party Attested Third-Party Certifica-
tion (1PA3PC) protocol to address the issues faced by the non-centralized HKP
keyserver network.

Section 4.1 refines the problematic presented in Section 1.2, having reviewed
the needed concepts for better understanding it, and presenting results of empir-
ically probing the keyserver network’s health over several years, and formalizes
in Subsection 4.1.2 why the certificate poisoning attack can take place: the
protocol currently in place does not require acknowledgement for appending a
signature packet to an existing certificate.

Section 4.2 presents the proposed protocol, giving an interaction overview
that shows how a signee requires to publicly acknowledge (this is, to attest) any
packets appended to their certificate. Section 4.3 details the steps, following
an algorithmic notation, to be carried out in order to implement the 1PA3PC
protocol.

4.1 Assessment of the magnitude of the problem
As discussed in Sections 2.3 and 2.4 , the use of a large-scale network of transitive
trust based on a decentralized WoT scheme requires means for distributing both
public keys and peer certification over said keys. In order for the key distribution
scheme to be decentralized as well, it is desirable for said scheme to spread over
a keyserver network (as opposed to WKD or DANE, presented in Subsections
3.2.1 and 3.2.2).

A working keyserver network has existed for close to 20 years, primarily
based on the SKS software. However, both social and technical issues have
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led it to become unreliable; as Subsection 2.6.4 explains, many operators have
stopped offering keyservers due to the impossibility to remove information once
it has been uploaded, particularly as it makes impossible to comply with the
European General Data Protection Regulation (GDPR) takedown requests.

Certificate poisoning attacks (see Section 2.6.6) enable any attacker to make
any chosen certificate unusable by appending to it too many certifications (by
bogus, throwaway identities). Given that, because of the Gossip keyserver
synchronization protocol, once information regarding any given certificate is
uploaded to the keyserver network it is impossible to remove it, said attacks
constitute a severe threat.

This work holds that there is still value in a fully decentralized Web-of-Trust
keyserver network. We proceed to present arguments as and a proposal as how
to keep such a service useful and reliable given the described attacks.

4.1.1 A previous study on the SKS keyserver network sta-
tus

This subsection presents partial results a previous, unpublished study, started
in early 2019, aiming to understand the evolution of the network’s complexity,
that shows how the SKS keyserver network is breaking apart. This clearly
illustrated how the current situation endangers the future of the SKS network,
a vital component to the decentralized OpenPGP WoT network. The original
scope of this study has been to discover and work on the connectivity between
keyservers aiming to provide a further analysis it using social network analysis.

While this study’s continued data gathering and presenting has been kept
as stable as possible over the three years this Subsection explains, there have
been important changes in the network topology, in the servers taken as root for
discovery, and in the software keyservers use. Some of the gathering and inter-
preting routines are impacted by said changes; the present data, nevertheless,
still supports this narrative.

While the social network analysis do not ultimately lead to meaningful re-
sults, the graphs it has produced in early stages make obvious the problem that
is now described: if the SKS keyserver network, as an example of a decentralized
WoT network, is facing an existential threat. Figure 4.1(a) shows that in early
2019 there has been a lively server community, with strong inner connectivity
and a good degree of redundancy. Three years later, figure 4.1(b) presents a
striking comparison: the network has severely shrunk, and there is only marginal
connectivity between server clusters. The network could very easily partition
and stop syncing. Fortunately, due to the nature of the gossip protocol, even
though edges are directed, information does flow bidirectionally (the direction
of edges show only which server declares to initiate the connections). It should
be also mentioned that the two presented figures are snapshots: they present
the reality found at the moment a particular scan is attempted. However, scans
are performed four times a day, and while the topology they describe does vary,
the overall traits remain mostly stable when reviewing several snapshots close
in time.
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Figure 4.1: SKS keyserver network connectivity. Nodes represent servers, di-
rected edges represent the declared Gossip network; direction represents which
server initiates the connection.

The effect of the 2019 attacks in Subsections 2.6.3, 2.6.4 and 2.6.6 leads to
a sharp drop in the number of keyservers as part of this network: as Figure
4.2 shows, in early 2019, between 300 and 600 successful connections are often
sustained during each run, but between June and August, this number falls
down to between 80 and 200, and seemingly reaching an equilibrium during
2020 below 100. Said observations over time can also be appreciated in Figure
4.3: the older measurements can be seen to the right, averaging almost 400
successful connections, with a ±150 variance. Newer measurements, much more
abundant, peak around 90.

Additionaly, the original authors of the SKS program operated for several
decades the sks-keyservers.net domain, which worked as a set of keyserver
pools: keyservers that fulfilled given conditions are grouped under DNS aliases
(eg. na.pool.sks-keyservers.net for servers hosted in North Amer-
ica, eu.pool.sks-keyservers.net for Europe; servers operating under the
TCP port 80 (HTTP) are grouped under p80.pool.sks-keyservers.net,
as well as many others). This allows server operators to know their service would
be federated into a network, and users specifying any of those pools to their
OpenPGP implementation would distribute their network load among the whole
keyserver network; users are left without a single, reliable address from which
to obtain OpenPGP keys and certificates (Tange 2021). But not only that: as
Figure 4.2 clearly shows with a second sharp drop, the sks-keyservers.net
domain name is retired in June 2021; many keyserver operators retire their
servers, as the viability of a decentralized network is once more endangered.
Figure 4.3 presents a histogram of the successful connections over three years,
showing a narrow but clear peak with less than 100 successful connections, and
a wider, lower peak with 350-500 connections.
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Figure 4.2: Livelihood analysis of the SKS keyserver network, showing the reply
status for each of the member servers, measured between January 2019 and March
2022.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

Number of successful connections
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keyservers from the livelihood analysis of the SKS keyserver network, measured
between January 2019 and March 2020.
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4.1.2 An interpretation of the HKP key exchange protocol
This work holds that the very lax HKP key exchange protocol can be identified
as the culprit for the above situation.

A sample key exchange and validation is presented in Figure 4.4. Do note
that the first step (identity validation) is presented as a required step. Key certi-
fications are usually done pairwise (this means, it is usually expected for Alice to
certify Bob’s key and for Bob to certify Alice’s key), but each individual carries
out the validation separately; both parties should first validate their respective
identities,1 and exchange their key fingerprints: a single, constant-length hash of
their public key, as the third line in Figure 2.7 (a string following the form AB41
C1C6 8AFD 668C A045 EBF8 673A 03E4 C1DB 921F, this is, a 160-bit
hash, presented for readability as ten 16-bit groups, encoded as their hexadeci-
mal values). But this should be stressed: this exchange is done off-band, so the
keyserver network cannot enforce it to have been carried out.

Alice

Alice

Bob

Bob

Keyserver

Keyserver

(out of band)

Validation should
always be done, but
nothing enforces it.

Updates

Figure 4.4: Sequence diagram presenting how Bob currently certifies Alice’s key.

Bob’s following interactions can all be carried out exclusively with the key-
servers: he asks the keyserver for the certificate CkA

, matching Alice’s finger-
print and including her public key, kA. The server returns this certificate if it
is already known (or returns an error otherwise), which Bob proceeds to cer-
tify2 (C(B, kA)) and send back to the keyserver. Finally, the keyserver appends

1Each person can have different policies and requirements to consider another person’s
identity as trusted.

2Certifying is often referred to as signing, and certifications are often called signatures;
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C(B, kA) to kA, following which all requests for kA includes C(B, kA). Natu-
rally, due to the Gossip protocol, this is propagated throughout the keyserver
network.

Any third party Carol can then request Alice’s certificate, CkA
from the key-

server network, build a trust path to it, and initiate encrypted communications
with Alice. All this, regardless of whether they have been already in contact
with Alice or Bob, as shown in Figure 4.5.

Carol

Carol

Keyserver

Keyserver

Alice

Alice

for Alice ?

(includes )

Verify
(with own WoT)

Encrypted communication

using

Figure 4.5: Sequence diagram presenting how Carol can find and use Alice’s key
and validate a WoT trust path for it using a public keyserver, and start a trusted,
encrypted communications channel afterwards.

Naturally, the above described communication is vulnerable to certificate
poisoning: given that Alice has no real control over CkA

(she only controls
the corresponding private key), a hostile Mallory can easily create n throw-
away identities {kM1 , kM2 , ...kMn} and the respective certifications on kA, this
is, {C(M1, A), C(M2, A), ...C(Mn, A)}. With no validation in place, the key-
server network blindly accepts all those certifications over kA into CkA

.

4.2 First-party attested third party certification
protocol

The essence of the 1PA3PC protocol this work presents is to require that any
packets added to a certificate belonging to any participant of the keyserver
network is publicly accpeted (attested) by its owner before being added to the

while said terms clearly avoid the cacophony of so many terms including the certif– component,
throughout this work we strive for better precision by using the more formal alternatives.
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database. By requiring, in contrast with the preexisting protocol described in
Subsection 4.1.2, the active participation of the signee for any signature packets
to be appended to their certificate, certificate poisoning is effectively erradicated
from the threat model.

A side effect of this work is that all social relation indications that can be
inferred by looking at the WoT connections as a social graph actually represent
the real social connections (this is, Bob cannot sign a famous user’s identity
without said user accepting his signature).

In contrast with having all interaction for Alice’s key certification by Bob
happening between Bob and the Keyserver, as presented in Figure 4.4, both
actors now interact with each other, and only Alice is able to place her certifi-
cation’s modifications to the keyserver, as shown in Figure 4.6.

Alice

Alice

Bob

Bob

Keyserver

Keyserver

(out of band)

If Alice does not recognize
as legitimate, she

does not attest it, and is not
distributed by the server.

Verifies

on

Updates

Figure 4.6: Sequence diagram for the proposed first-party-attested key certifica-
tion

Alice and Bob still require to perform off-band identity validation, and the
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Algorithm 1: Bob intends to sign Alice’s certificate
Input: Bob has verified Alice as the owner of kA out-of-band, has kA’s

fingerprint fA.
Output: Alice’s certificate CkA

including Bob’s signature, ckB→kA
.

Result: Alice receives ckB→kA
to act upon.

1 begin
2 CkA

← search(keyserver, Alice);
3 if found(CkA

) and fingerprint(CkA
) == fA then

4 CkA
← sign(CkA

, kB);
5 send(Alice, CkA

);
6 end
7 end

first step of the protocol is –as it is in the current implementation, outlined in
Subsection 4.1.2– for Bob to retrieve CkA

from the keyserver. After locally cer-
tifying CkA

to obtain C(B, kA). However, Bob sends the modified certification
to Alice. Alice can then decide whether the certificate should be published or
not. If she decides to proceed, creates an attestation Att(A,C(B, kA)).

It is then Alice who sends her certified public key to the keyserver (and,
thus, to the keyserver network). The receiving keyserver validates that an
incoming packet includes a modification to CkA

, so verifies whether this carries
A’s attestation and, if so, adds it to the information it knows about CkA

.

4.3 Protocol walk-through
As figure 4.6 shows, our proposed protocol involves the same three actors: two
public key owners (Alice and Bob), who respectively own (control both the
public and the private components) CkA

and CkB
, and an automated keyserver.

After meeting in person and exchanging identity information so that Bob
trusts Alice is the true owner of CkA

, she gives him the key’s fingerprint. Bob
wants to publicly certify Alice’s certificate, so he follows Algorithm 1:

Bob requests the keyserver for the certificate corresponding to Alice’s iden-
tity based on its fingerprint and, after verifying the received information is cor-
rect and can be asserted to be CkA

, creates a signature packet sign(C, kB) and
appends it to his local copy of CkA

. Bob then sends CkA
, with his certification

appended, to Alice.
Upon receiving C from Bob, Alice proceeds with Algorithm 2: Alice tra-

verses the list of packets in CkA
. When she finds a packet c that contains Bob’s

certification of her key (kB → kA), given she remembers having recently met
and exchanged key fingerprints with Bob, acknowledges it as a legitimate certi-
fication. Of course, if Alice does not recognize c to be a legitimate packet, she
discards it.

She then appends c to her certificate CkA
, creates an attestation Att(kA, CkA

)

67



Algorithm 2: Alice’s actions to acknowledge Bob’s signature by at-
testing it.
Input: Certificate CkA

received from Bob.
Output: Updated certificate CkA

.
Result: Alice sends the keyserver ckB→kA

and the matching
attestation Att(kA, CkA

).
1 begin
2 foreach packet c in CkA

do
3 if c = kB → kA and A.acknowledge(c) then
4 CkA

← c ;
5 CkA

← Att(kA, CkA
);

6 send(keyserver, CkA
);

7 else
8 discard(ckA

);
9 end

10 end
11 end

acknowledging the addition of this signature to her certificate, and appends
this attestation to her certificate as well. Having done that, Alice uploads her
updated certificate CkA

to the keyserver.
This triggers the keyserver to start Algorithm 3: the keyserver receives a

set of RFC4880-compliant packets, P . P happens to include data augmenting
Alice’s certificate, CkA

. Do note that the keyserver does not validate who is the
originator for: it might have been submitted by an individual user such as Alice,
or it could have been imported after synchronizing with a different keyserver.
Algorithm 3 is executed nonetheless.

For the purposes of this work, we focus on the case where the received data
includes packets to be appended to CkA

. The keyserver builds an index of
attestations AttP present in P and starts processing all packets in P . If a given
packet c is a certification on kA, it searches whether AttP includes a matching
attestation Att(kA, c). If a matching attestation is found, the keyserver adds
both c and Att(kA, c) to its database, otherwise, it discards c.

At this point, the proposed 1PA3PC protocol effectively counters the flaws
in the current scheme that make the certificate poisoning possible (refer back to
Figure 4.4): by making any packet addition to certificate CkA

depend on having
been approved by its owner Alice by the means of an attestation Att(kA, c), a
legitimate user B (Bob) is able to certify CkA

. However, given each certification
needs Alice to attest it, a malicious actor Mallory is no longer able to attack CkA

with certificate poisoning. At most, she can create an army of fake identities
to saturate Alice’s mailbox with unwanted attestation requests — but such
an attack constitutes only a temporary annoyance (Alice is able to purge her
mailbox of said spam), and does not carry any longer lasting implications.
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Algorithm 3: The keyserver receives Alice’s certificate, which might
carry new packets in it
Input: Keyserver has received cryptographic material including any

packets to be appended to CkA

Result: Keyserver’s database is updated, appending to Alice’s
certificate CkA

the new signature ckB→kA
and its attestation

by Alice, Att(kA, CkA
).

1 begin
2 AttP ← attestations_index(P)
3 foreach packet c in P do
4 if c(∗ → kA) then
5 if AttP includes Att(kA, c) then
6 kA ← c;
7 kA ← Att(kA, c);
8 add_to_database(kA);
9 else

10 discard(c);
11 end
12 end
13 end
14 end

4.4 Summary
After having built up the knowledge, both regarding and in the formal challenges
being faced by the decentralized keyserver network, presented in the earlier
chapters, this chapter starts by giving a more focused view on the problem
stated in Section 1.2.

Subsection 4.1 presents a study done throughout three years, which docu-
ments how the size of the keyserver network is effectively shrinking.

Subsection 4.1.2 presents the currently implemented protocol for performing
key certifications: the reason why certificate flooding is possible is that no action
needs to be taken by a given person to acknowledge a certification is legitimate.

Section 4.2 presents the core of this work: the protocol with which a key-
server ensures a key certification for a given user is accepted by the receiving
user.

Section 4.3 details how the protocol is to be implemented for each of the
involved actors, walking through the specific algorithms for each of them.
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Chapter 5

Implementation, validation
and results

This chapter starts by outlining the integration of this proposed work into the
existing OpenPGP services and tools ecosystem, while following the IETF stan-
dard defining OpenPGP, RFC4880,1 and discusses the tests carried out that
prove the proposed protocol does serve as a counter measure against the certifi-
cate poisoning attack.

5.1 Implementing the protocol
This research proposes a protocol to counter the ill effects of certificate poison-
ing. In this section, we present an implementation carried out with modifications
as small as possible to currently deployed software, as a means for validating
our protocol’s effectivity. While GnuPG, the de-facto reference OpenPGP im-
plementation, does not yet implement attestation (as it is shown in Subsection
5.1.2), it is supported by Sequoia,2 a modern, Rust-based reimplementation that
is gaining traction in the OpenPGP user space.

The version of Sequoia used for the code snippets shown in this chapter is
quite different from usual OpenPGP tools, as it operates in a stateless way: it
does not have a user directory (such as GnuPG ’s .gnupg) in which all of the
user’s cryptographic material is stored. So the user identity to be used for each
operation always has to be specified as an explicit command-line parameter.
The current Sequoia versions do offer both a stateful implementation, sq, and
a stateless implementation based on the Stateless OpenPGP Command Line

1This work is developed based on the published RFC 4880 standard (Callas et al. 2007),
and following the standardization process for its update. In August 2024, RFC 9580 is released
(Wouters et al. 2024). We decided that this work should continue to refer to RFC 4880 as it is
still the document that all of the implementations studied and used already adhere to. We do
not believe any changes in the new standard to counter what this work discusses or proposes.

2https://sequoia-pgp.org/
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Interface (Gillmor 2024), sqop.

5.1.1 Certificate attestation under Sequoia

Before detailing the implementation done as a proof for our protocol, we consider
relevant to detail how the needed functionality is achieved. In order to illustrate
how certificate attestation can be carried out with Sequoia’s command-line tool,
sq, this subsection follows up the explanation with users Alice and Bob, both
creating their keys. Bob signs Alice’s certificate, and Alice attests that signature
as valid. Notice that here an sq tool is used, available to the general public as
of April 2023. The aim is just to illustrate the general workflow using currently
available tooling.

Key creation (both parties) Alice and Bob create their cryptographic key
material. Each of them would do this separately, on their own computer.
In both cases, the full fingerprint is shown, as it has to be communicated to
the other interested party (for the examples shown, this output is filtered
to show only the relevant line of output). Alice operates from the host
called wonderland, and Bob from sponge:

wonderland$ sq key generate -u ’Alice <alice@example.org>’ --export
alice.pgp

wonderland$ sq inspect alice.pgp | grep Fingerprint
Fingerprint: 5D0C4ABC3AA08597421E65BEA348D974414C729A

The first generated file, alice.pgp, contains the full cryptographic ma-
terial (both the private and the public key). alice.pgp.rev is the
revocation certificate (which is not further used in this case). Bob does
the equivalent actions on his system:

sponge$ sq key generate -u ’Bob <bob@example.net>’ --export bob.pgp
sponge$ sq inspect bob.pgp|grep Fingerprint

Fingerprint: 43E737F786979A81CC41A6A75742563F7281572B

The files generated by both parties are not yet good for uploading to a
keyserver: as it is shown later in Subsection 5.1.2, they include both the
private and the public components.

Extracting and uploading the certificate The generated key should be al-
ways carefully guarded, as it contains the private key, which is secret
material. In order to upload the certificates to a keyserver, Sequoia re-
quires the user to extract it from the full key. After doing this, both users
send their certificates to the keyserver:

wonderland$ sq key extract-cert --output alice_cert.pgp alice.pgp
wonderland$ sq keyserver send alice_cert.pgp

sponge$ sq key extract-cert --output bob_cert.pgp bob.pgp
sponge$ sq keyserver send bob_cert.pgp
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Obtaining, signing and sending Alice’s certificate After having met in per-
son to exchange their fingerprints, Bob fetches Alice’s certificate from the
keyserver and signs it. Notice that Bob needs to specify which UID or
UIDs from Alice’s certificate to sign:
sponge$ sq keyserver get alice 5D0C4ABC3AA08597421E65BEA348D974414C729A

--output alice_cert.pgp
sponge$ sq certify bob.pgp alice_cert.pgp ’Alice <alice@example.org>’

--output alice_cert_signed.pgp

The next step is to communicate Alice’s signed certificate back to her;
Bob uses the Unix mutt mail management program to do so, due to the
ease to be driven from the command line.
sponge$ echo ’Signed certificate is attached to this mail.’ | \

sq sign --cleartext-signature --signer-key bob.pgp | \
mutt ’Alice <alice@example.org>’ -s ’Your OpenPGP signed

certificate’ -a alice_cert_signed.pgp

The above pipeline builds a mail for which the subject is the string Your
OpenPGP signed certificate, which includes the attached file alice_cert_signed.pgp,
and with the text specified in the first line cleartext-signed as the mail
body.

Alice verifies, attests, and uploads the signed certifcate Once Bob has
sent the mail to Alice, given she already knows Bob’s identity, she can
verify the mail actually comes from the expected party. The following
exchange is somewhat simplified, as the workflow for mail handling can
be quite cumbersome. From her mail client, she feeds the received mes-
sage body to sq verify and, if the verification satisfies her, saves the
attachment as my_signed_cert.pgp:
[wonderland mail client] | sq verify --signer_cert bob_cert.pgp
Good signature from 5742563F7281572B
Hi! Please find your signed certificate attached to this mail.
1 good signature
[wonderland mail client] attachment_save_as my_signed_cert.pgp

Having verified the mail really comes from Bob (by checking the finger-
print, 5742563F7281572B; this is usually automatically done by the
mail client), she merges the signature into her main certificate, attesting
it:
wonderland$ sq keyring merge alice.pgp alice_cert_signed.pgp --output

alice_key_with_cert.pgp
wonderland$ sq key attest-certifications alice_key_with_cert.pgp -o

alice_attested.pgp
wonderland$ sq key extract-cert --output alice_attested_cert.pgp

alice_attested.pgp

Finally, Alice can now send her attested certificate, including Bob’s certi-
fication, to the keyservers:
wonderland$ sq keyserver send alice_attested.pgp
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At that point, a keyserver operating under the proposed protocol should
accept Alice’s attested certificate, including Bob’s certification.

5.1.2 The attestation as OpenPGP packet-level data
OpenPGP keys stored as files are opaque and not meant for end-users to in-
spect. sq provides two commands, inspect and packet, to provide users
respectively with simple and detailed information about the information. This
subsection presents the corresponding information for the salient points pre-
sented in Subsection 5.1.1. Given the amount of output yielded both by the
inspect and packet subcommands is too large, comparisons between differ-
ent runs is made using the Unix diff tool, capturing the output of two program
invocations. This is included to clarify the effect of the specific actions analyzed.

The first and second steps mentioned previously are key creation and, from
there, public key extraction. The differences between the full key and the up-
loadable certificate are, as expected, only the removal of the Secret key pack-
ets:

$ diff -u <(sq inspect alice.pgp) <(sq inspect alice_cert.pgp)
--- /dev/fd/63 2023-04-26 12:37:17.018675195 -0600
+++ /dev/fd/62 2023-04-26 12:37:17.018675195 -0600
@@ -1,9 +1,8 @@
-alice.pgp: Transferable Secret Key.
+alice_cert.pgp: OpenPGP Certificate.

Fingerprint: 5D0C4ABC3AA08597421E65BEA348D974414C729A
Public-key algo: EdDSA
Public-key size: 256 bits

- Secret key: Unencrypted
Creation time: 2023-04-26 18:25:26 UTC

Expiration time: 2026-04-26 11:51:47 UTC (creation time + P1095DT62781S)
Key flags: certification

@@ -11,7 +10,6 @@
Subkey: DE923B01881B31292AFCA6E08517F86ECBD84BCB

Public-key algo: EdDSA
Public-key size: 256 bits

- Secret key: Unencrypted
Creation time: 2023-04-26 18:25:26 UTC

Expiration time: 2026-04-26 11:51:47 UTC (creation time + P1095DT62781S)
Key flags: signing

@@ -19,7 +17,6 @@
Subkey: C95BA9C4669D295FF5BC634763E668F03D50B993

Public-key algo: EdDSA
Public-key size: 256 bits

- Secret key: Unencrypted
Creation time: 2023-04-26 18:25:26 UTC

Expiration time: 2026-04-26 11:51:47 UTC (creation time + P1095DT62781S)
Key flags: authentication

@@ -27,7 +24,6 @@
Subkey: E17B9CF1F4404363BE6D14ACB42B4346746850B4

Public-key algo: ECDH
Public-key size: 256 bits

- Secret key: Unencrypted
Creation time: 2023-04-26 18:25:26 UTC

Expiration time: 2026-04-26 11:51:47 UTC (creation time + P1095DT62781S)
Key flags: transport encryption, data-at-rest encryption

Bob’s certification on Alice’s key consists in a signature packet appended to
Alice’s generated certificate:
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$ diff -u <(sq packet dump alice_cert.pgp) <(sq packet dump alice_cert_signed.pgp)
--- /dev/fd/63 2023-04-26 12:38:04.074703065 -0600
+++ /dev/fd/62 2023-04-26 12:38:04.074703065 -0600
@@ -50,6 +50,22 @@

Digest prefix: 4BC9
Level: 0 (signature over data)

+Signature Packet, new CTB, 195 bytes
+ Version: 4
+ Type: GenericCertification
+ Pk algo: EdDSA
+ Hash algo: SHA512
+ Hashed area:
+ Signature creation time: 2023-04-26 18:26:53 UTC (critical)
+ Signature expiration time: P1826DT18235S (2028-04-25 23:30:48 UTC)

(critical)
+ Issuer: 5742563F7281572B
+ Notation: salt@notations.sequoia-pgp.org
+ 00000000 76 ba 5b 1b 44 d7 e1 6c dc fd 6f a2 e7 10 fe d2
+ 00000010 f6 b3 9a 5c e8 44 68 ae a3 38 c4 dd 5d 88 19 4a
+ Issuer Fingerprint: 43E737F786979A81CC41A6A75742563F7281572B
+ Digest prefix: EB9E
+ Level: 0 (signature over data)
+
Public-Subkey Packet, new CTB, 51 bytes

Version: 4
Creation time: 2023-04-26 18:25:26 UTC

And the difference between the certificate signed by Bob and it being attested
by Alice also consists only of a signature packet of type AttestationKey:

$ diff -u <(sq packet dump alice_cert_signed.pgp) <(sq packet dump
alice_attested_cert.pgp)

--- /dev/fd/63 2023-04-26 12:38:33.466720474 -0600
+++ /dev/fd/62 2023-04-26 12:38:33.466720474 -0600
@@ -50,3 +50,17 @@

Digest prefix: 4BC9
Level: 0 (signature over data)

+Signature Packet, new CTB, 255 bytes
+ Version: 4
+ Type: AttestationKey
+ Pk algo: EdDSA
+ Hash algo: SHA512
+ Hashed area:
+ Signature creation time: 2023-04-26 18:26:21 UTC (critical)
+ Issuer: A348D974414C729A
+ Notation: salt@notations.sequoia-pgp.org
+ 00000000 92 84 f8 12 b4 4a f0 f0 70 5b fe 55 78 13 e1 98
+ 00000010 a2 b8 dc ac 22 71 a9 6c 01 fe 00 94 41 a6 f7 28
+ Issuer Fingerprint: 5D0C4ABC3AA08597421E65BEA348D974414C729A
+ Attested Certifications:
+ 1DBDA99BBD686E0C87FD6350B04559124C3F99A3BF13C9D6EC9031AF72 \

75F48AA226B6F8A871C0763A9A88F22E7EDA4D08287EF043BCBE59CAA3 \
1037640282F5

+ (critical)
+ Digest prefix: 3413
+ Level: 0 (signature over data)
+
Signature Packet, new CTB, 195 bytes

Version: 4
Type: GenericCertification

Notice that, while the attestation is also a signature packet, sq does recog-
nize it carries Attested Certifications. This is an extension to RFC 4880; given
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the GnuPG key does not yet support this extension, if the same two certificates
are compared by its equivalent to sq packet dump (gpg --list-packets),
the report shows basically a self-signature3 with extra data following a notation
defined at salt@notations.sequoia-pgp.org in the hashed subpacket 20 :

$ diff -u <(gpg --list-packets alice_cert_signed.pgp) <(gpg --list-packets
alice_attested_cert.pgp)

(...)
-# off=507 ctb=c2 tag=2 hlen=3 plen=195 new-ctb
+# off=507 ctb=c2 tag=2 hlen=3 plen=255 new-ctb
+:signature packet: algo 22, keyid A348D974414C729A
+ version 4, created 1682533581, md5len 0, sigclass 0x16
+ digest algo 10, begin of digest 34 13
+ critical hashed subpkt 2 len 4 (sig created 2023-04-26)
+ hashed subpkt 16 len 8 (issuer key ID A348D974414C729A)
+ hashed subpkt 20 len 70 (notation: salt@notations.sequoia-pgp.org=[not

human readable])
+ hashed subpkt 33 len 21 (issuer fpr v4

5D0C4ABC3AA08597421E65BEA348D974414C729A)
+ critical hashed subpkt 37 len 64 (?)
+ data: [256 bits]
+ data: [254 bits]

In order to validate an attestation for the keyserver to accept or reject it
upon submission or reconciliation, we can focus on the relevant packet (which
can be isolated as Sequoia identifies its type as AttestationKey) in the
alice_attested_cert.pgp file obtained above:

Signature Packet, new CTB, 3 header bytes + 255 bytes
Version: 4
Type: AttestationKey
Pk algo: EdDSA
Hash algo: SHA512
Hashed area:

Signature creation time: 2023-04-26 18:26:21 UTC (critical)
Issuer: A348D974414C729A
Notation: salt@notations.sequoia-pgp.org
00000000 92 84 f8 12 b4 4a f0 f0 70 5b fe 55 78 13 e1 98
00000010 a2 b8 dc ac 22 71 a9 6c 01 fe 00 94 41 a6 f7 28

Issuer Fingerprint: 5D0C4ABC3AA08597421E65BEA348D974414C729A
Attested Certifications:
1DBDA99BBD686E0C87FD6350B04559124C3F99A3BF13C9D6EC9031AF72 \
75F48AA226B6F8A871C0763A9A88F22E7EDA4D08287EF043BCBE59CAA3 \
1037640282F5

(critical)
Digest prefix: 3413
Level: 0 (signature over data)

This packet can be easily identified as created by Alice, as its Issuer
matches the lower 64 bits of the Fingerprint, which is the same as her public
key value.

During the development of this work, a yet missing piece as of the version of
Sequoia when this work is carried out (at vesion 0.27.0) is a way to ask Sequoia
for which signatures on a given certificate have been attested by its owner.

3The OpenPGP standard recommends certificates to always be self-signed and be dis-
tributed including the self-signature so that it is a complete entity even when the secret key
is removed from the transferable secret key (Callas et al. 2007, p. 11.2)
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5.1.3 Code modifications for implementing the 1PA3PC
protocol

The previous section presents how attestations are represented inside each cer-
tificate. Some minor code modifications are necessary in order to implement
the 1PA3PC protocol here. Notice that the full implementation is shown at
Appendix A.

As explained in Section 1.4, a guiding criteria is to keep the code modification
for implementing this protocol at a minimum. This section describes the changes
made to the Sequoia command line tool sq (see Appendix Section A.1) and to
the Hockeypuck keyserver software (refer to Appendix Section A.2).

Due to some versioning conflicts between the Hockeypuck and Sequoia ver-
sions used, it is deemed convenient to run them in separate virtual servers, so
glue code in the form of two scripts (see Appendix Section A.3) is written.

Finally, the installation, configuration, and measurement of the test system
is driven by a custom-developed script, presented in Appendix Section A.4.

5.2 Validation
In order to verify the proposed protocol is effective against the certificate poi-
soning attack in a hostile environment, we set up the following experiment:

With a network of five keyservers based on the Hockeypuck software (Mar-
shall 2015a). 500 OpenPGP keys are generated using the Sequoia client (Azul
et al. 2021), and a WoT is laid out on it, with a signature between each of two
keys at random being made with p = 0.01. We do not believe specific WoT
properties are relevant for the experiment, so it was not attempted to replicate
the internal structure of the real OpenPGP WoT. The reason for creating the
signatures is to generate the expected variance in the number of packets that
constitute each of the keys, thus driving their size to realistic values. The 500
keys are uploaded randomly to each of the five keyservers. Figure 5.1 shows the
upload and synchronization progress to the five keyservers until they converge
on the same keyset. As Figures 5.1, 5.2 and 5.3 show, key generation and upload
happens since the beginning of the experiment and approximately until the end
of its first minute (t = 60).

The keyservers connect with each other for synchronization several times per
minute, and this can be seen with the spread of keys through them, starting
approximately at t = 15 and until the number of keys per server stabilizes at
500, in Figure 5.1, at t = 215. Signature packets continue to be appended to
the keys, but their number remains stable with 500 keys from this point on: all
of the additional information received consists on signature packets added to
existing keys.

After the “valid” signatures are generated, and as the “legitimate” WoT gets
populated and the signatures are still spreading through the keyserver network,
an attack is simulated: starting around t = 200, 1 000 further keys are created
(but not uploaded to the keyserver network). Five victim keys are selected and
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Figure 5.1: Number of keys present in the keyserver network over the lifetime of
the attack simulation.
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Figure 5.2: Size of the 20 largest certificates, as seen by one of the keyservers
in the network, during the lifetime of the attack simulation, using the traditional
protocol.
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signed with the 1 000 attacker keys, with the signatures uploaded randomly to
each of the keyservers. The attack is quite efficient time-wise: it takes only
close to 100 seconds to perform. As a result, as evidenced in Figure 5.2, by
t = 300, the five attacked keys are bloated to almost 300KB, while the rest of
the keys remain under to 5KB in size. The keyserver synchronization protocol
is left running so the information spreads to the whole network, and by t = 450,
information flow over the keyserver network stabilizes.

In contrast, using our proposed 1PA3PC protocol, the same experiment is
carried out. It becomes clear that the attack does not succeed, as Figure 5.3
shows: the 20 largest keys in the keyring remain all within the same range and,
while they continue to successfully receive certifications, an ill-intentioned Mal-
lory is no longer enable to disrupt Bob or threaten his certificate’s connectivity
in the WoT.
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Figure 5.3: Size of the 20 largest certificates, as seen by one of the keyservers
in the network, during the lifetime of the attack simulation, using our 1PA3PC-
enforcing protocol.

Summing up the reported times, the experiment consists of the following
approximate intervals shown in Table 5.1.

Table 5.1: Stages of the network during the experiment

Time (seconds) Stage
0 – 60 Key generation
15 – 215 Keys spread to all servers
60 – 200 Signature generation
200 – 300 Attack
60 – 450 Signature synchronization
450 – Network is stable

As for the results, while the attack led to five keys being disproportionately
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larger than the rest of the keys present in the keyserver network in Figure
5.2, showing evidence of a successful attack, Figure 5.3 shows all keys within
the same range, as expected from the random signature distribution explained
earlier in this section. It is worth keeping in mind that the attack simulated
in this experiment consisted of 1 000 throwaway, hostile keys only. Observed
certificate poisoning attacks have been close to a hundred times bigger.

5.3 Summary
After delineating our proposal in Chapter 4, this chapter presents the imple-
mentation and experimental validation carried out supporting this thesis.

Section 5.1 presents, step by step, how users can use the Sequoia OpenPGP
client to carry out each of the steps needed by our proposed protocol: create
key pairs, extract the certificate, interact with keyservers, sign third party cer-
tificates, verify them and attest their validity. Subsection 5.1.2 presents the
packet-level differences between the relevant stages of the interaction. Subsec-
tion 5.1.3 point to each of the relevant sections of Appendix A, where the details
of the server code modification and deployment are fully detailed.

Section 5.2 begins by presenting the details of the experiment carried out
to prove the efficacy of the 1PA3PC protocol against the certificate poisoning
attack and shows the observed behavior, clearly showing the attack is successful
before our protocol is introduced, but is completely avoided once the proposed
modifications are active.
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Chapter 6

Conclusions

This final chapter looks back on the research work in Section 6.1, validating in
Section 6.2 the goals set by the hypothesis are met, identifying in Section 6.3
the contributions brought forward. Section 6.4 aims at a general evaluation of
the contribution it does within the field by comparing with the related works
presented throughout Chapter 3. Finally, Section 6.5 explores future directions
where this work can be continued.

6.1 Summary of the research work
This research thesis introduces a protocol for countering the OpenPGP cer-
tificate poisoning attack in the setting of a decentralized keyserver network
based on a Gossip synchronization protocol. The central points of this work are
also published in the Journal of Internet Services and Applications (Wolf and
Ortega-Arjona 2024).

The characteristics of OpenPGP, the reasoning behind a decentralized model,
and the details of the Gossip centralization protocol are introduced in Section
1.1, and detailed through Chapter 2. The certificate poisoning attack is first pre-
sented in Section 1.2. The reasoning behind its emergence is presented through-
out the several smaller attacks and weaknesses presented throughout Section
2.6, and particularly in Subsection 2.6.6.

Chapter 3 presents different mechanisms that, directly or indirectly, help re-
duce the impact of this attack. Section 3.1 presents a document laying out sev-
eral different possible paths for tackling abuse in OpenPGP keystores. Section
3.2 presents several works that identify the problem as stemming from the decen-
tralized, append-only nature of the keyserver network, and propose to replace
it with other key discovery and distribution techniques. Section 3.3 presents
several transversal studies aimed at finding the prevailing weaknesses in the
main keyserver database, comprising over 30 years of public cryptographic ma-
terial. Section 3.4 details several proposals attempting to improve the OpenPGP
ecosystem’s security without abandoning the keyserver model, and keeping the
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centrality of the Web of Trust as a distributed transitive trust model. Section
3.5 presents works by different authors holding that OpenPGP’s shortcomings
are too many, and proposing other communication alternatives not relying in
its technology.

Chapter 4 presents the “First-party-attested Third-party certifications” pro-
tocol (1PA3PC) that is the core of this work. In order to do this, Section 4.1
presents evidence on how the keyserver network is in the brink of a breakdown
since the certificate poisoning attacks are public, and presents the formalization
on how this is partly due to the absolute lack of verification in the key material
submitted to keyservers. Section 4.2 presents the proposed protocol from a high
level overview, and Section 4.3 presents a detailed walk-through, presenting the
algorithms each of the communication parties follows to exchange certifications
following 1PA3PC.

Having the protocol enunciated, it is necessary to prove its effectiveness for
countering the certificate poisoning attack. Chapter 5 details the experiment
performed to validate 1PA3PC works as expected. Section 5.1 explains the
necessary first steps in creating, validating and certifying identities using the
Sequoia client software for a minimal sample scenario between communication
parties Alice (A) and Bob (B). Subsection 5.1.3 outlines the code modifications
performed in order to implement our protocol in the Hockeypuck keyserver soft-
ware. Having the modifications ready, Section 5.2 details the experiment with
which this work is backed, and presents the observed results in a keyserver
network.

6.2 Hypotesis restatement
As stated in Section 1.3, the hypothesis for this work is:

A protocol is proposed that allows for the synchronization of OpenPGP
certificates between keyservers, while preventing the certificate poi-
soning attack. It preserves the main characteristics of the Web of
Trust transitive trust distribution schema, including that of being
fully decentralized, by performing relatively small modifications to
the HKP keyserver interaction model, and allowing for interoper-
ability with the currently deployed client software.

As presented in Chapter 5, the proposed protocol is proven to counter the
ill effects of certificate poisoning. It does not change semantics nor most op-
erations related to the WoT transitive trust distribution schema, and ensures
decentralized operation can still function. As mentioned in Subsection 5.1.3,
the required code modifications are really minimal, totaling less than 500 lines
of code, and retaining client compatibility with the existing keyserver network.

It is worth pointing out that the hypothesis mentions interoperability with
the currently deployed client software. The relevance for insisting in maintaining
compatibility is to avoid the need for a large-scale software migration. Projects
such as GnuPG, Thunderbird, Mailvelope or ProtonMail boast about millions
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of installations. Proposing a change requiring an incompatible update for all
users is impossible.

In contrast, there are currently close to a hundred keyservers (Gallagher
2024b). It is not beyond reason to coordinate a protocol update with the current
keyserver operators.

As for the validation of the proposed 1PA3PC protocol, the experimental
validation presented in Section 5.2 shows the proposed protocol is effective in
resisting certificate poisoning attacks, while still maintaining all of the decen-
tralization characteristics of the original protocol.

6.3 Contributions restatement
In Section 1.5 it is stated that:

The main contribution of this thesis is:

• A network protocol for the exchange of certifications on crypto-
graphic identities that can reliably prevent certificate poisoning
attacks against OpenPGP keys in a Web-of-Trust environment,
with minimal modification to server software and without re-
quiring modifying existing end-user tools.

This allows us to also enumerate secondary contributions:

1. Give the key owner the ability to control which certifications
are to be published, granting them reputation control.

2. Allow the WoT decentralized trust model to remain relevant
and sustainable for communities based on OpenPGP.

The main contribution is clearly the reason why this work started: not only
it is seen as the target to achieve, but represents in a way going back to the
baseline situation that existed before the appearance of the certificate poisoning
attacks.

Secondary contribution 1 provides a very valuable addition to the WoT
model: as a direct effect of 1PA3PC, WoT users are now able to accept or repeal
certifications appended to their identities. While this is not part of OpenPGP’s
original design goals, it does provide the important ability for a user not to be
associated with any other random user that certifies their key. Given that WoT
graphs can be used to map the social environment of a person, we consider it
of great importance to be able to reject given associations.

As for secondary contribution 2, our work also achieves this goal. As we near
the final stages of this project, the Sequoia suite has incorporated the proposed
functionality.1 We expect other implementations to gradually follow suit.

1The list_attestations function has been proposed in https://gitlab.com/
sequoia-pgp/sequoia-sq/-/issues/94 and accepted as of August 13, 2024.
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An important discussion to have in the wider OpenPGP community before
proposing incorporation of our work in the Hockeypuck keyserver is whether it
could lead to a situation termed as death by kindness: despite being over 30
years old, the OpenPGP WoT has never had massive adoption. The currently
active set of users2 is estimated to be among the tens of thousands. As discussed
in Subsection 2.6.5, less than 15% of keyserver users ever register signatures to
their keys, and we can expect that a majority of OpenPGP users do not ever
upload their keys to said network.

The obtained result is partly due to the usability barrier of the relevant
toolset. If further complications are to be added to get signatures, it might
lead to lowering usage, reducing even further the WoT’s significance (hence the
term death by kindness). Unlike client tools, 1PA3PC adoption requires all of
the keyservers participating in a network to run with our proposed protocol (as
otherwise the delta between servers would grow too large and end up breaking
the Gossip-based synchronization).

6.4 Comparison
Chapter 3 reviewed several works related in some way to this proposal. Section
3.1 refers, as a starting point, to Kahn Gillmor 2019a, which was drafted shortly
after the certificate poisoning attack surfaced. This draft outlines several pos-
sible implementations to protect a keystore from different kinds of attack, and
the credit for introducing the 1PA3PC concept remains Kahn Gillmor’s. Our
work formalizes, implements and validates this idea.

The works covered in Section 3.2 propose means for key discovery other
than the use of public keyservers. Their answers cover thoroughly the attack
our work targets, as well as others, but in the case of DANE (Hoffman and
Schlyter 2012; Wouters 2016) and WKD (Koch 2021b), do so by abandoning all
of the WoT’s properties, as third party signatures are stripped from the served
keys. This is mostly true also for TOFU for OpenPGP (Walfield and Koch 2016)
and Autocrypt (Kahn Gillmor 2021): while an interested user can fetch keys
from a keyserver to build a trust path to any given stripped certificate received
i.e. attached to an e-mail on a first contact (as Autocrypt does), the interaction
model itself shifts trust to the low attack probability of a first contact. Hence,
while TOFU for OpenPGP and Autocrypt do not solve certificate poisoning,
they route around it by discouraging WoT usage. ClaimChain (Kulynych et al.
2018) keeps the WoT as a core foundation for identity assurance, but given the
implementation is shifted to a blockchain implementation, with certifications
recorded in a distributed ledger, while targeting integration in the OpenPGP
ecosystem, it does require a full change of client software, as no widely deployed
OpenPGP client software incorporates its functionality.

2As mentioned in Section 6.2 there are millions of users of OpenPGP, but estimations
on the Web of Trust usage, based mostly upon observation of the rate of changes in the
keyservers’ data, is much lower.
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As for the ideas presented in Section 3.4, while contrasting with those pre-
sented above, they all aim at fixing different problems in the keyserver network
without discarding either the keyserver network itself or the WoT model. The
BlockPGP keyserver (Yakubov et al. 2020) is prompted by the realization that
the keyserver network’s viability is hampered by several issues that diminish
the trust a user can have on any of the participating servers, mainly due to
synchronization delays and the inability to reject fake or invalid key IDs. The
proposal is to replace the Gossip protocol by a blockchain implementation, in
principle not too different from ClaimChain (Kulynych et al. 2018). Yakubov’
model includes the requisite for a certificate holder to validate any signatures
done to their key, as our 1PA3PC proposal does. Yakubov implements this
idea, though, using a Proof-of-Authority consensus model in order to allow for
an administrator to remove unwanted modifications from the database; this goes
against the lack of centralization that is warranted by the WoT model and that
is preserved by our proposal.

Pini 2018 implements a new keyserver software that, besides storing certifi-
cate data as unstructured data, analyzes and “explodes” each OpenPGP packet
of a received certificate into a series of tables in a relational database system,
which much better permits analyzing the keyserver data looking for problematic
patterns. As the keyserver implemented by Pini implements the Gossip proto-
col, the information is also stored as OpenPGP packets. The analysis done by
Pini allows for the keyserver to reject non-RFC-conforming data, and it would
be trivial to set thresholds to discard data packets constituting certificate poi-
soning.

Rucker 2017 proposes a new keyserver software that includes a novel syn-
chronization protocol instead of Gossip, based on Invertible Bloom Filters to
estimate small differences in large datasets such as the databases held by key-
servers. It explicitly targets efficiency in key synchronization, not allowing for
further validation, and limits validation on received packets to ensuring they
are properly formatted OpenPGP packets, version 4 or higher. As such, then,
this work proposes a different synchronization strategy, but does not address
the issue of controlling certificate poisoning.
Falta agregar varios trabajos aquí.

6.5 Future work
The WoT landscape has not stood still since work on this project began. In
July 2024, RFC 9580 has been published (Wouters et al. 2024). This document,
termed the crypto refresh during its multiyear development process, drives the
compatibility that OpenPGP implementations follow, and surely deserves ana-
lyzing and harmonizing both with the problematic and solutions presented so
far.

Presenting a security-relevant protocol backed by experimental evaluation
can only prove the protocol works in the situation as foreseen. As future work,
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a valuable addition to the presented work can be implementing this protocol (or
possibly the whole of HKP) for formal validation in a validation framework such
as the Tamarin theorem prover (Basin et al. 2022). This kind of proof would
bring much tighter security guarantees compared to what has been achieved by
this work.

The work we present assumes a network of well-behaved keyservers. As
mentioned in Section 6.3, a number of keyservers running the traditional pro-
tocol peering with a network of 1PA3PC-based servers could continue to work
and sync, but an ever-growing delta would increasingly add dead weight to the
communications, until potentially a breaking point is reached. Finding said
breaking point, and finding strategies to avoid their occurrence (including the
modification of the Gossip protocol, as several authors mentioned in Section 3.4
have suggested) can lead to interesting research. Naturally, the potential for
death by kindness (also mentioned in 6.3) can be heightened by adding further
steps to key upload and exchange, so it must be necessarily weighed in for any
potential proposal.

The UID poisoning problem, introduced in Subsection 2.6.3, can also be
tackled with a protocol similar to the one presented in this work. This would
probably require adding keyserver validation information inside the certificates,
and requiring an intermediate step where the keyserver knows about a key but
does not yet trust in it (only keeps it in a staging area for a given time, until its
UIDs are validated). This could lead to a federated alternative to centralized
services such as keys.openpgp.org, presented in Subsection 3.4.4.
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Appendix A

Source code modifications for
the implementation of a
1PA3PC-enabled keyserver

This appendix includes:

• Modifications made to the Sequoia command-line utility, sq, in Section
A.1

• Modifications made to the Hockeypuck keyserver software, in Section A.2

• Glue code for interfacing Hockeypuck with Sequoia whenever it needs to
validate new (incoming) certificates), in Section A.3

• Provisioning tool used to set up and run the experiment, in Section A.4

All of the code presented in this Appendix can also be downloaded from the
https://1pa3pc.gwolf.org/ Web address.

A.1 Modifications to Sequoia

While the command-line sq tool does provide a way to create attestations by
means of the attest-certifications subcommand, as of the moment this
work is carried out, it does not yet provide the functionality to verify the at-
testation list. We identify the need to modify the sq command and create a
list-attestations command.

In order to work with the same sq version deployed in the test systems, and
following the instructions in git tag b89c17, this repository is grafted upon the
preceding sequoia repository as follows:

$ git remote add sequoia https://gitlab.com/sequoia-pgp/sequoia
$ git fetch sequoia
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$ git replace --graft b89c172 82eb0d7
$ git fetch sequoia
$ git checkout sq/v0.27.0
$ git switch -c list_attestation

The following files are identified as relevant for implementing the required
function:

sq/src/sq.rs Entry points for the sq binary. Dispatches subcommands to
each of the SqSubcommands::* modules.

sq/src/sq_cli.rs Implements the subcommands for the sq key names-
pace.

sq/src/commands/key.rs Implements the actual logic dispatched when the
key subcommands are called.

openpgp/src/cert/amalgamation.rs This file defines the module named
ValidUserIDAmalgamation. One of the functions defined by it is
attestated_certifications(), which returns the userid’s attested
third-party certifications.

The full modifications for implementing the list_attestations() func-
tionality, with its main code in the sq/src/commands/key.rs file, but in-
cluding modifications also to sq/src/sq-usage.rs (documenting the changes
in the user-queriable help produced by the program) and to sq/src/sq_cli.rs
(the logic to actually call list_attestations() when so requested by the
user) follows, in a diff format:
diff --git a/sq/src/commands/key.rs b/sq/src/commands/key.rs
index b132adf4..0dd1a910 100644
--- a/sq/src/commands/key.rs
+++ b/sq/src/commands/key.rs
@@ -8,7 +8,7 @@ use crate::openpgp::Result;
use crate::openpgp::armor::{Writer, Kind};
use crate::openpgp::cert::prelude::*;
use crate::openpgp::packet::prelude::*;

-use crate::openpgp::packet::signature::subpacket::SubpacketTag;
+use crate::openpgp::packet::signature::subpacket::{SubpacketTag, SubpacketValue};
use crate::openpgp::parse::Parse;
use crate::openpgp::policy::{Policy, HashAlgoSecurity};
use crate::openpgp::serialize::Serialize;

@@ -33,6 +33,7 @@ use crate::sq_cli::KeyUseridStripCommand;
use crate::sq_cli::KeyExtractCertCommand;
use crate::sq_cli::KeyAdoptCommand;
use crate::sq_cli::KeyAttestCertificationsCommand;

+use crate::sq_cli::KeyListAttestationsCommand;
use crate::sq_cli::KeySubcommands::*;

pub fn dispatch(config: Config, command: KeyCommand) -> Result<()> {
@@ -43,6 +44,7 @@ pub fn dispatch(config: Config, command: KeyCommand) ->

Result<()> {
ExtractCert(c) => extract_cert(config, c)?,
Adopt(c) => adopt(config, c)?,
AttestCertifications(c) => attest_certifications(config, c)?,

+ ListAttestations(c) => list_attestations(config, c)?,
}
Ok(())

}
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@@ -714,6 +716,53 @@ fn adopt(config: Config, command: KeyAdoptCommand) ->
Result<()> {
Ok(())

}

+fn list_attestations(config: Config, command: KeyListAttestationsCommand)
+ -> Result<()> {
+ let input = open_or_stdin(command.key.as_deref())?;
+ let key = Cert::from_reader(input)?;
+ let fpr = key.fingerprint();
+ let creation_time = std::time::SystemTime::now();
+ // From the packets that make up the key, pick only those with
+ // valid crypto, and which mke sense at this particular time
+ let valid_cert = key.with_policy(&config.policy, creation_time)?;
+
+ let mut num_attested = 0;
+ let mut att_certs: Vec<String> = Vec::new();
+ for uid in valid_cert.userids() {
+ for att in uid.attested_certifications() {
+ // Attested cetifications make sense currently only in V4
+ // signatures.
+ if let Signature::V4(v4) = att {
+ let hashed = v4.hashed_area();
+ for subpacket in hashed {
+ // We want to report the fingerprint of the
+ // certificate issuer that’s being attested
+ match subpacket.value() {
+ SubpacketValue::IssuerFingerprint(fp) => {
+ num_attested += 1;
+ att_certs.push(fp.to_string());
+ }
+ _ => {}
+ }
+ }
+ }
+ }
+ }
+
+ if num_attested == 0 {
+ println!("{} certifications attested for key {}.", num_attested, fpr);
+ } else if num_attested == 1 {
+ println!("{} certification attested for key {}:", num_attested, fpr);
+ } else {
+ println!("{} certifications attested for key {}:", num_attested, fpr);
+ }
+ for att in att_certs {
+ println!(" {}", att);
+ }
+
+ Ok(())
+}
+
fn attest_certifications(config: Config, command: KeyAttestCertificationsCommand)

-> Result<()> {
// Attest to all certifications?

diff --git a/sq/src/sq-usage.rs b/sq/src/sq-usage.rs
index 186cd0f7..5053da7f 100644
--- a/sq/src/sq-usage.rs
+++ b/sq/src/sq-usage.rs
@@ -393,6 +393,8 @@
//! Converts a key to a cert
//! attest-certifications
//! Attests to third-party certifications

+//! list-attestations
+//! List certification attestations
//! adopt
//! Binds keys from one certificate to another
//! help

100



@@ -767,6 +769,30 @@
//! $ sq key attest-certifications --none juliet.pgp
//! ‘‘‘
//!

+//! ### Subcommand key list-attestations
+//!
+//! ‘‘‘text
+//!
+//! Present a list of attestations present in the certification.
+//!
+//! USAGE:
+//! sq key list-attestations [KEY]
+//!
+//! ARGS:
+//! <KEY>
+//! Lists attestations on KEY
+//!
+//! OPTIONS:
+//! -h, --help
+//! Print help information
+//!
+//!
+//! EXAMPLES:
+//!
+//! # Shows all the attestations present on the key
+//! $ sq key list-attestations juliet.pgp
+//! ‘‘‘
+//!
//! ### Subcommand key adopt
//!
//! ‘‘‘text

diff --git a/sq/src/sq_cli.rs b/sq/src/sq_cli.rs
index f477e9d9..1a46ff43 100644
--- a/sq/src/sq_cli.rs
+++ b/sq/src/sq_cli.rs
@@ -1741,6 +1741,7 @@ pub enum KeySubcommands {

ExtractCert(KeyExtractCertCommand),
Adopt(KeyAdoptCommand),
AttestCertifications(KeyAttestCertificationsCommand),

+ ListAttestations(KeyListAttestationsCommand),
}

#[derive(Debug, Args)]
@@ -2267,6 +2268,31 @@ pub struct KeyAttestCertificationsCommand {

}

+#[derive(Debug, Args)]
+#[clap(
+ name = "list-attestations",
+ display_order = 210,
+ about = "List certification attestations",
+ long_about =
+"
+Present a list of attestations present in the certification.
+",
+ after_help =
+"
+EXAMPLES:
+
+# Shows all the attestations present on the key
+$ sq key list-attestations juliet.pgp
+",
+)]
+pub struct KeyListAttestationsCommand {
+ #[clap(
+ value_name = "KEY",
+ help = "Lists attestations on KEY"

101



+ )]
+ pub key: Option<String>,
+}
+
#[derive(Parser, Debug)]
#[clap(

name = "wkd",

A.2 Modfications to Hockeypuck

The keyserver software itself, Hockeypuck, has to be modified so that it validates
each of the received packets upon a certificate insertion or update. Given this
validation is done no matter how the update or insertion are received (this
is, either directly via the HKP interface or as part of a Gossip update), the
modification made in the storage/storage.go file, which defines the API
needed to implement the HKP service’s storage backend. The validations for
either key insertions or updates are carried out in the UpsertKey() function,
that receives as its two parameters a Storage and a openpgp.PrimaryKey
objects, and returns a Keychange object and a possible error (or nil). The
needed modifications are:

Index: hockeypuck/packaging/src/gopkg.in/hockeypuck/hkp.v1/storage/storage.go
===================================================================
--- hockeypuck.orig/packaging/src/gopkg.in/hockeypuck/hkp.v1/storage/storage.go
+++ hockeypuck/packaging/src/gopkg.in/hockeypuck/hkp.v1/storage/storage.go
@@ -23,6 +23,11 @@ import (

"io"
"time"

+ "io/ioutil"
+ "os"
+ "os/exec"
+ "strings"
+

"gopkg.in/errgo.v1"

"gopkg.in/hockeypuck/openpgp.v1"
@@ -184,12 +189,73 @@ func firstMatch(results []*openpgp.Prima

func UpsertKey(storage Storage, pubkey *openpgp.PrimaryKey) (kc KeyChange, err
error) {

var lastKey *openpgp.PrimaryKey
+ var errMsg = ""
+

lastKeys, err := storage.FetchKeys([]string{pubkey.RFingerprint})
if err == nil {

// match primary fingerprint -- someone might have reused a
subkey somewhere

lastKey, err = firstMatch(lastKeys, pubkey.RFingerprint)
}

+
+ // -*- hockeypuck_pcic patch starts -*-
+
+ // We will be checking the received key, whether or not it is
+ // found in the DB. For that reason, to avoid clobbering err,
+ // we store its result in new_key_not_found (to be used a
+ // couple of lines below)
+ new_key_not_found := false

if IsNotFound(err) {
+ new_key_not_found = true
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+ }
+
+ // Temporary file to be used for communication with Sequoia
+ // for attestation validation
+ f, err := ioutil.TempFile("", "hkp-*")
+ if err != nil {
+ return nil, errgo.Newf("Could not create temporary file")
+ }
+
+ defer f.Close()
+ defer os.Remove(f.Name())
+
+ // Clearly bad style: open a predictably-named log file to
+ // record our modifications. In production code, this has to
+ // be eviscerated!
+ log_f, err := os.OpenFile("/tmp/modif.log",

os.O_APPEND|os.O_WRONLY|os.O_CREATE, 0600)
+ if err != nil {
+ return nil, errgo.Newf("Could not append to modification log")
+ }
+ defer log_f.Close()
+
+ // Write the ASCII-armored key certificate to check to the temporary file.
+ openpgp.WriteArmoredPackets(f, []*openpgp.PrimaryKey{pubkey})
+
+ out, err := exec.Command("/usr/local/bin/filter_certs", "--file",

f.Name() ).Output()
+ out_str := strings.TrimSpace(string(out))
+ if err != nil {
+ errMsg = strings.Join([]string{errMsg,
+ fmt.Sprintf("Error verifying with an external command:

%q\n", err)},
+ "\n")
+ log_f.WriteString(errMsg)
+ return KeyNotChanged{}, errgo.New(errMsg)
+ }
+
+ // The filter returns an ASCII-armored key certificate as
+ // STDOUT. Parse it back into a openpgp.PrimaryKey.
+ new_kr, err := openpgp.ReadArmorKeys( strings.NewReader(out_str) )
+ if err != nil {
+ return KeyNotChanged{}, nil
+ }
+
+ pubkeys := new_kr.MustParse()
+ if len(pubkeys) != 1 {
+ return KeyNotChanged{}, errgo.Newf("Unexpected answer:

verification answer should contain a single key (has %d)", len(pubkeys))
+ }
+ pubkey = pubkeys[0]
+
+ // -*- hockeypuck_pcic patch ends -*-
+
+ if new_key_not_found {

_, err = storage.Insert([]*openpgp.PrimaryKey{pubkey})
if err != nil {

return nil, errgo.Mask(err)

As explained in Subsection 5.1.3, due to versioning differences, the decision
is made to use a Sequoia attestation listing service in a different virtual server
than the Hockeypuck keyservers. Thus, the UpsertKey() function calls a glue
code for this communication; said code is presented next.
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A.3 Glue code for Hockeypuck to query Sequoia

Two Perl programs are developed to be used as glue code, this is, to aid a Hock-
eypuck server request a validation service from Sequoia installed in a different
system. As mentioned in Subsection 5.1.3, this is done due to versioning differ-
ences, and should not be part of a production setting. Even more, given these
programs pipe network traffic to a system binary, care must be taken never to
expose this to an open, potentially hostile network. It is necessary, though, for
faithfully reproducing the experimental setup we carry out.

The tcp_to_sq.pl program opens a listening TCP/IP socket in port 3333
of the server hosting Sequoia and writes whatever is received from any incoming
connections on said socket to a temporary file, until a line indicating the end of
the OpenPGP information is received (with the END PGP marker).

Subsequently, Sequoia is called with the sq key list-attestations
command on the given filename, and its output (the list of attested signatures
as part of a given certificate) are sent back to the originating client:

#!/usr/bin/perl
use strict;
use Capture::Tiny qw(capture);
use IO::Socket qw(AF_INET SOCK_STREAM);
use File::Temp;

my @cmd = qw(/usr/local/bin/sq key list-attestations);
$|=1;

my $server = IO::Socket->new(
Domain => AF_INET,
Type => SOCK_STREAM,
Proto => ’tcp’,
LocalHost => ’0.0.0.0’,
LocalPort => 3333,
ReusePort => 1,
Listen => 5,

) || die "Can’t open socket: $IO::Socket::errstr";

while (1) {
my ($conn, $buf, $keyfile, $filename, $out, $err, $exited);
$conn = $server->accept();

$keyfile = File::Temp->new();
$filename = $keyfile->filename;

while ($buf = <$conn>) {
print $keyfile $buf;
last if $buf =~ /END PGP/

}
$keyfile->flush;

($out, $err, $exited) = capture { system @cmd, $filename };
if ($exited) {

warn "Error running «@cmd $filename»: $exited";
warn $err;

}
print $conn $out;

}

$server->close();

A second glue program is deployed on each of the Hockeypuck server sys-
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tems: filter_certs. This program, called from our modifications to Hock-
eypuck (see Appendix Section A.2), calls Sequoia (the version available in the
Hockeypuck systems, not affected by the versioning conflict mentioned above) to
split a certificate into its corresponding individual packets. Any non-OpenPGP-
conforming data is dropped. Signature packets are verified to be attested (by
sending them to the tcp_to_sq.pl program presented above). A certificate
including only the attested certifications is then rebuilt and returned to the
keyserver.

#!/usr/bin/perl -w
use Capture::Tiny qw(capture);
use File::Copy;
use File::Glob ’:bsd_glob’;
use File::Temp qw(tempdir);
use Getopt::Long;
use IO::Socket qw(AF_INET SOCK_STREAM SHUT_RD);
use strict;

my ($stdout, $stderr, $exited);
my (%conf, $dir, $cert_file, @pkts, $valid_cert);

# Defaults
%conf = (debug => 0,

attest_port => 3333,
attest_ip => ’10.0.3.250’);

GetOptions(\%conf, ’debug’, ’file=s’, ’attest_port=i’, ’attest_ip=s’);

$dir = tempdir(CLEANUP => 1);
$cert_file = join(’/’, $dir, ’cert.pgp’);
move($conf{file}, $cert_file);
chdir($dir);

# Certificates always have to be split, checked and joined, as they
# will always bear a signature (even if it’s a self-sig).
($stdout, $stderr, $exited) = capture {system qw(sq packet split), $cert_file};
die "Could not split packets from $cert_file" unless $exited == 0;

@pkts = valid_pkts_from_cert();
$valid_cert = join_pkts(@pkts);
print $valid_cert;
exit 0;

# Filter the packets in the certificate, returning only the (indexes
# of) those we consider valid.
sub valid_pkts_from_cert {

# "sq packet dump" tells us what is the nature of each of the
# packets. We then assemble the validated certificate with:
# - All Public-Key or Public-Subkeys packets
# - All Signature packets where the Issuer Fingerprint is the same of any
# of the cert’s Public-Key’s Fingerprint.
# - All Signature packets that are part of the list of attestations
# - Packets that are _not_ signature packets are also passed without
# further validation.
my ($cert_data, $pkt_idx, @pkts, $fpr, @attestations);

($stdout, $stderr, $exited) = capture {system qw(sq packet dump), $cert_file};
die "Could not dump packets in $cert_file" unless $exited == 0;
$cert_data = $stdout;
@attestations = parse_attest_list();
debug("Parsed attestations:", @attestations);

$pkt_idx = 0;
for my $pkt (split(/\n(?=\S)/, $cert_data)) {

$pkt =~ /^(.+) Packet/;
my $pkt_type = $1;
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debug("Packet $pkt_idx: $pkt_type");
# Find this key’s fingerprint: if @pkts is empty, this is the
# first packet we review, and its fingerprint is the master
# key fingerprint.
if (scalar @pkts == 0 and $pkt_type eq ’Public-Key’ and

$pkt =~ /\n\s+Fingerprint: ([\dABCDEF]{40})\n/) {
$fpr = $1;
debug(’Fingerprint:’, $fpr);

}

if ($pkt_type eq ’Signature’) {
if ($pkt =~ /\n\s+Issuer Fingerprint: ([\dABCDEF]{40})\n/) {

my $cert_fpr = $1;
if (defined($fpr) and $cert_fpr eq $fpr) {

# Self-sig
push(@pkts, $pkt_idx);

} elsif (scalar(@attestations) > 0 and
grep {$_ eq $cert_fpr} @attestations) {

debug("Packet $pkt_idx properly attested ©");
# Attested signature
push(@pkts, $pkt_idx);

} else {
# Discard this packet
debug("Discarding non-attested $pkt_type packet $pkt_idx");

}
}

} else {
push(@pkts, $pkt_idx);

}
$pkt_idx += 1;

}
debug(scalar(@pkts), " valid packets: ", join(’, ’, @pkts));
return @pkts;

}

# Once we know which packets we are to keep from the certificate we
# are validating, join it into a new certificate.
#
# Returns the resulting ASCII-armored certificate.
sub join_pkts {

my (@pkts, @cmd);
@pkts = @_;
@cmd = (’sq’, ’packet’, ’join’);
for my $pkt (@pkts) {

my $file = bsd_glob("${cert_file}-${pkt}--*");
debug("File for $pkt: $file");
push(@cmd, $file);

}
($stdout, $stderr, $exited) = capture { system(@cmd) };
die ’Could not join packets ’, join(’, ’, @pkts) unless $exited == 0;
return $stdout;

}

# Returns the list of attested certifications this cert has.
sub parse_attest_list {

my (@lines, @atts, $att_hlp, $att_res, $num, $fh, $cert);

# To send the certificate to be checked to the server, we read it
# from the file
open ($fh, ’<’, $cert_file);
$cert = join("\n", <$fh>);
close($fh);

# Create the client socket to the predefined server
$att_hlp = IO::Socket->new(

Domain => AF_INET,
Type => SOCK_STREAM,
proto => ’tcp’,
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PeerPort => $conf{attest_port},
PeerHost => $conf{attest_ip}
);

if (! $att_hlp) {
warn "Could not connect to attestation helper: #IO::Socket::errstr";
return undef;

}

# Send the certificate ($cert) and receive the results ($att_res)
$att_hlp->send($cert);
$att_hlp->shutdown(SHUT_RD);
$att_hlp->recv($att_res, 1024);
$att_hlp->close;

# Split the results, looking for the attested key signatures
@lines = split(/\n/, $att_res);
if (scalar(@lines) >= 1 and $lines[0] =~ /^(\d+) certification/) {

$num = $1;
} else {$num = 0;}

# No attestations found.
return if (!defined($num) or $num eq 0);
for my $lin (@lines) {

$lin =~ /^\s+([\dABCDEF]{40})/ and push @atts, $1;
}

return @atts;
}

sub debug {
return unless $conf{debug};
print STDERR @_,"\n";

}

A.4 Provisioning tool to set up and run the ex-
periment

Finally, the following code in Ruby has been written as build_img.rb. This
program requires root privileges to be run. It installs, configures, and runs
the needed containers for the experiment. This script grew organically, and
in retrospect, it would be clearer and much more maintainable to have it as a
Ansible playbook or using a similar infrastructure.

This program is built using the OptionParser library, allowing to specify
from the command line which steps to include or skip, and to set up different
values (i.e. number of keyservers, amount of keys to generate or to poison, etc).
The main phases it implements are:

1. Initializes and performs basic OS configuration in the specified number of
servers as lxc containers.

2. Installs and initializes either the “regular” or the modified Hockeypuck soft-
ware in each of the keyservers, configuring a random peering arrangement
between them. Each of them initializes a local PostgreSQL database.

3. Sets up monitoring for the amount and size of keys for each of the key-
servers.
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4. Creates, cross-signs, and attests and uploads the specified number of PGP
keys following specified configurable parameters.

5. Runs the attack and waits for information flow between keyservers to
stabilize

#!/usr/bin/ruby
require ’fileutils’
require ’faker’
require ’logger’
require ’net/http’
require ’optparse’
require ’./labstats’

raise RuntimeError, ’This script has to be run with root permissions’ unless
Process.uid == 0

@conf = {
:do_configure_peering => true,
:do_create_database => true,
:do_create_pgp_keys => true,
:do_initial_setup => true,
:do_install_hockeypuck => true,
:do_install_attest_ck => true,
:do_pgp_poison => true,
:do_sign_pgp_keys => true,
:guest_name => ’hkp%02d’,
:guest_dir => ’/var/lib/lxc/%s’,
:hkp_pkg_base => ’hockeypuck-pcic_1.0-1_amd64.deb’,
:hkp_pkg_modif => ’hockeypuck-pcic_1.0-2_amd64.deb’,
:install_pkgs => %w(eatmydata screen ssmtp postgresql sudo git bzr mercurial

golang sq openssh-server libcapture-tiny-perl),
:install_pkgs_attest => %w(eatmydata screen ssmtp netcat-openbsd git cargo

pkg-config libssl3 libssl-dev clang llvm
nettle-dev openssh-server libcapture-tiny-perl),

:ip_gateway => ’10.0.3.1’,
:ip_network => ’10.0.3.%d/24’,
:log_prio => :debug,
:log_to => ’build_img.log’,
#:log_to => STDOUT,
:modified_hkp => true,
:num_hosts => 5,
:peer_prob => 0.3,
# How likely is it that a signature will be attested? (in
# relation with the total signatures created at
# pgp_sign_prob)
:pgp_attested_sign_prob => 0.3,
# How likely is that a given key will sign any other key
:pgp_sign_prob => 0.01,
:pgp_keydir_filename => ’pgp_keydir.txt’,
:pgp_keys_dir => ’generated_pgp_keys’,
# Total keys generated will be pgp_keys_per_host p num_hosts
:pgp_keys_per_host => 100,
:pgp_keys_to_poison => 5,
:pgp_attacker_keys => 1000,
:use_eatmydata => true

}

OptionParser.new do |opts|
opts.banner = ’Usage: build_img.rb [options]’
opts.on(’-h’, ’--help’, ’Prints this help’){puts opts;exit 0}
opts.on(’-n NUM’, ’--num_hosts’, ’Number of HKP servers to build’) { |n|

@conf[:num_hosts] = n.to_i
}
opts.on(’-A’, ’--no-attest-ck’,

’Skip attestation checker setup’) {
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@conf[:do_initial_attest_ck] = false
}
opts.on(’-C’, ’--no-config-peering’,

’Skip the creation of a peering network’) {
@conf[:do_configure_peering] = false

}
opts.on(’-D’, ’--no-create-db’,

’Skip PostgreSQL DB initialization’) {
@conf[:do_create_database] = false

}
opts.on(’-H’, ’--no-install-hkp’,

’Skip downloading and installing Hockeypuck’) {
@conf[:do_install_hockeypuck] = false

}
opts.on(’-I’, ’--no-initial’,

’Skip initial container creation’) {
@conf[:do_initial_setup] = false

}
opts.on(’-M’, ’--no-modified-prot’,

’Install Hockeypuck without the protocol modification’) {
@conf[:modified_hkp] = false

}
opts.on(’-P’, ’--no-create-pgp’,

’Skip the creation of OpenPGP keys’) {
@conf[:do_create_pgp_keys] = false

}
opts.on(’-S’, ’--no-sign-keys’,

’Skip the signature of OpenPGP keys’) {
@conf[:do_sign_pgp_keys] = false

}
opts.on(’-X’, ’--no-poison-pgp’,

’Skip the poisoning of OpenPGP keys’) {
@conf[:do_pgp_poison] = false

}
end.parse!

def build_guest(guest_num)
initial_setup(guest_num) if @conf[:do_initial_setup]
create_database(guest_num) if @conf[:do_create_database]
install_hockeypuck(guest_num) if @conf[:do_install_hockeypuck]
configure_peering(guest_num) if @conf[:do_configure_peering]

end

def initial_setup(guest_num)
guest = guest_name_for(guest_num)
# Create the LXC base install
@log.info("Installing base system packages for #{guest}")
cmd = %W(lxc-create -t debian -n #{guest} -- -r bullseye

--packages=#{@conf[:install_pkgs].join(’,’)} )
cmd.unshift(’eatmydata’) if @conf[:use_eatmydata]
system(*cmd)

# For reliability and predictable network addressing: set up the
# network configuration in the lxc configuration, comment it from
# the system
@log.info("Configuring network for #{guest}")
File.open( File.join(@conf[:guest_dir] % guest, ’config’),

’a’ ) do |conf|
conf.puts "lxc.net.0.ipv4.address = #{ip_and_netmask_for(guest_num)}"
conf.puts "lxc.net.0.ipv4.gateway = #{@conf[:ip_gateway]}"

end
net_conf = File.open(filename_in_guest(guest, ’/etc/network/interfaces’), ’r’

).readlines.map {|lin| lin="# #{lin}" if lin =~ /eth0/}
File.open(filename_in_guest(guest, ’/etc/network/interfaces’), ’w’) do |net|

net.puts(net_conf)
end
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# Copy the "glue script" to interface between Hockeypuck and Sequoia
File.copy_stream(’filter_certs’,

filename_in_guest(guest, ’/usr/local/bin/filter_certs’)
)

File.chmod(0755, filename_in_guest(guest, ’/usr/local/bin/filter_certs’))

@log.info("Starting up container #{guest}")
# Wait for things to settle (is eatmydata a good idea or not?) and
# start the guest system up
sleep(2)
system(’lxc-start’, ’-n’, guest)

end

def attest_ck_setup()
guest = ’attest’;
@log.info(’Building attestation checker’)
cmd = %W(lxc-create -t debian -n #{guest} -- -r bookworm

--packages=#{@conf[:install_pkgs_attest].join(’,’)})
cmd.unshift(’eatmydata’) if @conf[:use_eatmydata]
system(*cmd)

# ’sq’ is compiled from the modified version of Sequoia’s repository
File.copy_stream(’sq’, filename_in_guest(guest, ’/usr/local/bin/sq’))
File.chmod(0755, filename_in_guest(guest, ’/usr/local/bin/sq’))

@log.info("Configuring attestation checker’s network")
File.open( File.join(@conf[:guest_dir] % guest, ’config’),

’a’ ) do |conf|
# 240 → 10.0.3.250
conf.puts "lxc.net.0.ipv4.address = #{ip_and_netmask_for(240)}"
conf.puts "lxc.net.0.ipv4.gateway = #{@conf[:ip_gateway]}"

end
net_conf = File.open(filename_in_guest(guest, ’/etc/network/interfaces’), ’r’

).readlines.map {|lin| lin="# #{lin}" if lin =~ /eth0/}
File.open(filename_in_guest(guest, ’/etc/network/interfaces’), ’w’) do |net|

net.puts(net_conf)
end

# "Glue script" to check with Sequoia the keys sent by the Sequoia servers
File.copy_stream(’tcp_to_sq.pl’,

filename_in_guest(guest, ’/usr/local/bin/tcp_to_sq’))
File.chmod(0755, filename_in_guest(guest, ’/usr/local/bin/tcp_to_sq’))
File.copy_stream(’tcp_to_sq.service’,

filename_in_guest(guest,
’/etc/systemd/system/tcp_to_sq.service’))

@log.info("Starting up attestation container")
# Start the guest system up
system(’lxc-start’, ’-n’, guest)

adduser = guest_running(guest,
%w(adduser --disabled-password --disabled-login

--gecos SequoiaHelper sq))
Process.wait(adduser.pid)
guest_running(guest, %w(systemctl enable tcp_to_sq))
guest_running(guest, %w(systemctl start tcp_to_sq))

end

def create_database(guest_num)
guest = guest_name_for(guest_num)
@log.info("Creating database in #{guest}")
# Wait until PostgreSQL is running, and create a HKP user and
# database. Have to lxc-attach as "real" files in /run are not
# exposed through the cgroups
wait_for_psql = guest_running(guest,

[’perl’, ’-e’, ’until (-e "/var/run/postgresql/.s.PGSQL.5432") {print
"."; sleep 1}’])

Process.wait(wait_for_psql.pid)
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wait_for_psql.close

psql = guest_running(guest,
%w(sudo -u postgres psql template1))

psql.puts ’CREATE USER hkp PASSWORD \’hkp-pcic-test\’;’
psql.puts ’CREATE DATABASE hkp OWNER hkp;’
psql.close_write
@log.debug ’--- PostgreSQL results: ’ + psql.read
psql.close

end

def install_hockeypuck(guest_num)
guest = guest_name_for(guest_num)
@log.info("Installing Hockeypuck in #{guest}")

# Copy and install the corresponding Hockeypuck package into the
# container
hkp_pkg = @conf[:modified_hkp] ?

@conf[:hkp_pkg_modif] :
@conf[:hkp_pkg_base]

FileUtils.cp(hkp_pkg, filename_in_guest(guest, ’root’))
dpkg = guest_running(guest,

[%W(dpkg -i /root/#{hkp_pkg})])
Process.wait(dpkg.pid)
@log.debug ’--- dpkg results: ’ + dpkg.read
dpkg.close

# Fix the configuration to use the database we just created
fix_conf = guest_running(guest,

[’perl’, ’-p’, ’-i’, ’-e’,
(’s/^# dsn/dsn/; s/h0ck3y/hkp-pcic-test/; ’ +
’s/INFO/DEBUG/’),
’/etc/hockeypuck-pcic/hockeypuck.conf’])

Process.wait(fix_conf.pid)
fix_conf.close

# If our modifications are in place, the binaries have to be
# rebuilt.
if File.exists?(filename_in_guest(guest, ’/usr/sbin/hockeypuck-rebuild’))

rebuild = guest_running(guest, ’/usr/sbin/hockeypuck-rebuild’)
Process.wait(rebuild.pid)
rebuild.close

end
end

def configure_peering(guest_num)
guest = guest_name_for(guest_num)
@log.info("Configuring peering between servers for #{guest}")
conf = File.open(filename_in_guest(guest,

’/etc/hockeypuck-pcic/hockeypuck.conf’), ’a’)

@peers[guest_num].each_with_index do |peer, idx|
# No vamos a hablar con nosotros mismos
next if guest_num == idx
# Si en el volado salió que con este no, pos no
next unless peer

peer_addr = ip_addr_for(idx)
conf.puts ""
conf.puts ’[hockeypuck.conflux.recon.partner.%s]’ %

peer_addr.gsub(/\./,’-’)
conf.puts "httpAddr=\"#{peer_addr}:11371\""
conf.puts "reconAddr=\"#{peer_addr}:11370\""

end

# Listos para iniciar el servicio de Hockeypuck! Monitoreamos hasta
# que inicia correctamente (¡quẽ feo!)
@log.info(’About to start hockeypuck-pcic at %s’ % guest)
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success = false
times = 0
while ! success

sleep(1)
times += 1
start_hkp = guest_running(guest, [’systemctl’, ’restart’, ’hockeypuck-pcic’])
pid, status = Process.wait2(start_hkp.pid)
start_hkp.close

success = true if status.exitstatus == 0
@log.info(’%s startup @%d: %d → %d (%s)’ % [guest, times, pid, status,

(success ? ’✓’ : ’p’)])
end

end

def create_pgp_keys(guest_num)
@log.debug ’--- Generating %d OpenPGP keys for guest %d’ %

[@conf[:pgp_keys_per_host], guest_num]

@conf[:pgp_keys_per_host].times do |i|
person = Faker::Name.name()
mail = Faker::Internet.email(name: person)
userid = ’%s <%s>’ % [person, mail]
c_time = Faker::Time.backward(days: 1095).strftime(’%Y-%m-%dT%H:%M:%S’)
exp_time = Faker::Time.forward(days: 1095).strftime(’%Y-%m-%dT%H:%M:%S’)

Dir.mkdir(@conf[:pgp_keys_dir]) unless Dir.exists?(@conf[:pgp_keys_dir])
keyfile = File.join(@conf[:pgp_keys_dir],

’%02d_%04d.%s.pgp’ % [guest_num, i,
person.split(/\s/).join(’’)]

).gsub(/\.+/, ’.’)
certfile = keyfile + ’.cert’

# Generación de la llave usando Sequoia (desde el anfitrión)
system(’sq’, ’key’, ’generate’,

’--userid’, userid,
’--creation-time’, c_time,
’--expires’, exp_time,
’--export’, keyfile)

system(’sq’, ’key’, ’extract-cert’, keyfile, ’-o’, certfile)

# Registramos la llave y archivo en el archivo de
# control/bitácora, para su posterior consumo a la hora de firmar
# (omitiendo el nombre del directorio
File.write(@conf[:pgp_keydir_filename],

"#{File.basename(keyfile)}::#{userid}\n",
mode: ’a+’)

# Enviamos la llave por HKP al servidor
res = hkp_send_key(ip_addr_for(guest_num), File.read(certfile))
print ’ [%d-%d %s]’ % [guest_num, i,

(res.nil? ? ’✓’ : ’p ’)]
end

# Damos una "patada" a Hockeypuck para que inicie la sincronización
Process.wait(guest_running(guest_name_for(guest_num),

[’systemctl’, ’restart’, ’hockeypuck-pcic’]
).pid)

end

def gen_pgp_signatures()
keyfiles = {}
tot_sign = {:signatures => 0, :attestations => 0}
File.read(@conf[:pgp_keydir_filename]).split(/\n/).each do |lin|

lin =~ /^(.+)::(.+)$/ or
@log.warn "Unexpected line parsing #{@conf[:pgp_keydir_filename]}: #{lin}"

keyfiles[$1] = $2
end
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keyfiles.keys.each do |key1|
keyfiles.keys.each do |key2|

# Sólo firmar con probabilidad ≥ pgp_sign_prob
next unless rand <= @conf[:pgp_sign_prob]
if tot_sign[:signatures] % 50 == 0

print "\n%04d " % tot_sign[:signatures]
end
tot_sign[:signatures] += 1
print ’m’
signed = ’%s-signs-%s.cert’ % [key1, key2]

uid = keyfiles[key2]
@log.debug ’New signature %s → %s (%s)’ % [key1, key2, uid]
system(’sq’, ’certify’,

pgp_file_for(key1),
pgp_file_for(’%s.cert’ % key2),
uid,
’--output’, pgp_file_for(signed))

# Atestiguar la firma si la probabilidad así lo marca
if rand <= @conf[:pgp_attested_sign_prob]

@log.debug ’%s attests %s→%s signature’ % [key2, key1, key2]
print ’§’
tot_sign[:attestations] += 1
# Atestiguar y guardar en el mismo archivo (signed)
signed_full_key = ’%s.pgp’ % signed
system(’sq’, ’keyring’, ’merge’,

pgp_file_for(key2),
pgp_file_for(signed),
’--output’, pgp_file_for(signed_full_key))

system(’sq’, ’key’, ’attest-certifications’,
pgp_file_for(signed_full_key),
’-o’,
pgp_file_for(’%s.att’ % signed_full_key))

# Reescribimos pgp_file_for(signed), hay que especificar --force
system(’sq’, ’--force’, ’key’, ’extract-cert’,

’--output’, pgp_file_for(signed),
pgp_file_for(’%s.att’ % signed_full_key))

end

to_server = ip_addr_for( (0..@conf[:num_hosts]-1).to_a.sample )
@log.debug ’Sending %s→%s key to server %s’ % [key1, key2, to_server]
hkp_send_key(to_server, File.read(pgp_file_for(signed)))

end
end
return tot_sign

end

def pgp_poisoning(num)
# Creamos 1000 llaves para montar el ataque. Por lo visto, Hockeypuck
# ya se protege contra pgp-poisoner.
attack_dir = ’attack_keys’
attack_pids = []
Dir.mkdir(attack_dir) unless Dir.exists?(attack_dir)
@log.debug(’Creating %d poisoning keys’ % @conf[:pgp_attacker_keys])
print "\nC"
@conf[:pgp_attacker_keys].times do |i|

print "E" if i % 50 == 0
system(’sq’, ’--force’, ’key’, ’generate’,

’--userid’, ’Poisoning attacker key #%d’ % i,
’--export’, File.join(attack_dir, i.to_s))

end

# Elegimos las víctimas aleatorias que nos indicaron para atacar
File.read(@conf[:pgp_keydir_filename]).split(/\n/).sample(num).

each_with_index do |v, idx|
pid = fork()
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if ! pid.nil?
# Proceso padre: toma nota del hijo y lanza el siguiente ataque
attack_pids << pid
next

end

(victim, uid) = v.split(’::’)
victim_dir = File.join(attack_dir, victim)
Dir.mkdir(victim_dir) unless Dir.exists?(victim_dir)
print " #{idx}h..."
@log.debug(’Attack %d: Poisoning key «%s»’ % [idx, victim])
# Generamos cada firma como un archivo independiente porque hkp
# limita por tamaño máximo de POST
@conf[:pgp_attacker_keys].times do |i|

print ’A’ if i%50 == 0
to_server = ip_addr_for( (0..@conf[:num_hosts]-1).to_a.sample )
IO.popen([’sq’, ’certify’, File.join(attack_dir, i.to_s),

pgp_file_for(victim + ’.cert’), uid]) do |sign|
signed = sign.read
hkp_send_key(to_server, signed)

end
end

# El ataque se realiza desde un subproceso. Finalizamos el proceso
# al terminar el ataque.
exit(0)

end

@log.debug(’%d attacks launched.’ % num)
attack_pids.each { |pid| Process.waitpid(pid) }
@log.info(’%d attacks finished.’ % num)

end

def pgp_file_for(keyfile)
return File.join(@conf[:pgp_keys_dir], keyfile)

end

def hkp_send_key(server, key_data)
begin

post_url = ’http://%s:11371/pks/add’ % server
res = Net::HTTP.post_form(URI(post_url), ’keytext’ => key_data)
return nil if res.code.to_i == 200

rescue Errno::ECONNREFUSED
@log.warn(’Failed to send key to server %s: connection refused’ % server)

rescue
@log.warn(’Error sending key to server %s: %s (%s)’ %

[server, res.code.to_i, res.message])
end

end

def make_peer_list()
peers=[]
num = @conf[:num_hosts]

# Crear un arreglo anidado vacío (más "bonito" trabajar con arreglos
# cuadrados)
num.times do |i|

peers[i]=[]
num.times do |j|

peers[i][j] = nil
end

end

# Llenar con la probabilidad especificada
num.times do |i|

num.times do |j|
next if i==j
r=rand()
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if r > (1 - @conf[:peer_prob])
peers[i][j] = 1
peers[j][i] = 1

end
end

end
return peers

end

def peering_matrix()
num=0
peers = []
peers << ’Peering matrix for the test network:’
peers << ’===================================’
peers << ’’
peers << " " + @conf[:num_hosts].times.map{|i| i.to_s}.join(’’)
peers << @peers.map do |lin|

h = "#{num} "
num+=1
h + lin.map{|host| host ? ’X’ : ’ ’}.join(’’)

end

return peers.join("\n")
end

def guest_name_for(guest_num)
return @conf[:guest_name] % guest_num

end

def filename_in_guest(guest, target)
return File.join(@conf[:guest_dir] % guest, ’rootfs’, target)

end

def ip_and_netmask_for(guest_num)
return @conf[:ip_network] % (guest_num + 10)

end

def ip_addr_for(guest_num)
return ip_and_netmask_for(guest_num).gsub(/\/\d+/, ’’)

end

def guest_running(guest, cmd)
lxc_cmd = %W(lxc-attach -n #{guest} --)
lxc_cmd << cmd
lxc_cmd.flatten!
return IO.popen(lxc_cmd, ’r+’)

end

@log = Logger.new(@conf[:log_to])
@log.level = @conf[:log_prio]
@log.info(’--- Starting lab instantiation’)
started_at = Time.now

# Creamos la lista de cómo se van a comunicar entre sí los servidores,
# para implementarla durante la instalación en cada archivo de
# configuración.
@peers = make_peer_list()

# Vaciamos el archivo de directorio de llaves. Lo manejamos como
# archivo externo para comunicarlo entre procesos (y sí, fuchi, sin
# mutex para protegerlo... Crucemos los deditos)
File.write(@conf[:pgp_keydir_filename], ’’)

# Lanzamos un proceso independiente para construir a cada uno de los
# servidores de la red, y uno adicional para el verificador de
# testificación
builders = []
(@conf[:num_hosts]+1).times do |guest_num|

115



@log.info("--> #{guest_num} / #{@conf[:num_hosts]}")
pid = Process.fork
if pid

builders << pid
else

if guest_num < @conf[:num_hosts]
build_guest(guest_num)
@log.info ’*** Guest number %d finished building (%4.2f seconds)’ %

[guest_num, (Time.now - started_at)]
else

attest_ck_setup if @conf[:do_install_attest_ck]
@log.info ’*** Attestation checker finished building (%4.2f seconds)’ %

[guest_num, (Time.now - started_at)]
end
exit(0)

end
end

# Esperamos a que terminen de construirse todos los servidores
builders.each {|pid| Process.wait(pid)}
@log.info ’*** Laboratory built! (%4.2f seconds)’ % (Time.now - started_at)
@log.info ’ %d containers created (%s -- %s)’ %

[ @conf[:num_hosts],
guest_name_for(0),
guest_name_for(@conf[:num_hosts]-1)]

# Ya que el servidor de BD está corriendo, iniciamos los monitores de
# crecimiento de número de llaves y el histograma total de llaves
NumKeysMonitor.new(@conf[:guest_name], @conf[:num_hosts])
KeySizeHistogram.new(@conf[:guest_name], @conf[:num_hosts])

# Registramos la matriz de conexiones en cada uno de los servidores
# (para referencia más fácil al depurar)
if @conf[:do_configure_peering]
peers = peering_matrix()
@conf[:num_hosts].times do |i|

peer_file = filename_in_guest( guest_name_for(i), ’/root/peers.txt’ )
File.open(peer_file, ’w’) {|f| f.puts peers}

end
@log.debug "Peering information:\n#{peers}"

end

# Allow for servers to start up before sending requests
sleep(5)
if @conf[:do_create_pgp_keys]
pgp_creators = []
@conf[:num_hosts].times do |guest_num|

pid = Process.fork
if pid

pgp_creators << pid
else

create_pgp_keys(guest_num)
exit(0)

end
end
pgp_creators.each{|pid| Process.wait(pid)}

end

# Creamos las firmas de forma aleatoria entre las llaves generadas,
# siguiendo los parámetros :pgp_* de @conf
if @conf[:do_sign_pgp_keys]
if ! @conf[:do_create_pgp_keys]

@log.warn(’Not creating key signatures: keys not created, cannot’ +
’assume they exist.’)

end
tot_sign = gen_pgp_signatures()

end
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if @conf[:do_pgp_poison]
@log.info(’Poisoning and uploading %d generated keys’ %

@conf[:pgp_keys_to_poison])
pgp_poisoning(@conf[:pgp_keys_to_poison])

@log.info(’All is done. Keep the program running to log synchronization.’)
print "\n\nTime elapsed since end of attack: "
Thread.new do

i=0
print ’ ’
while true

i+=1
print "\b\b\b\b\b%05d" % i
sleep 1

end
end

finished = false
begin

sleep(36000) # 10hr
@log.info(’Finished!.’)
finished = true

ensure
@log.info(’Long sleep interrupted’) unless finished

end
end
exit 0
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