
Morfismos, Vol. 27, No. 1, 2023, pp. 1–30

Dimension reduction algorithms and techniques

Tzolkin Garduño Alvarado∗, Feliú Sagols Troncoso†, Gunnar Wolf‡,
Eddie Soulier§, Francis Rousseaux¶

Abstract

The recent proliferation of multidimensional output models in
AI has catalyzed advancements in dimension reduction research.
While these models accommodate diverse application fields and
dimensions, the sheer multiplicity doesn’t always yield substantial
insights. Dimension reduction emerges as a pivotal process for
translating high-dimensional data into a more manageable lower-
dimensional space. Achieving this requires preserving geometric
and topological properties across both spaces. This article aims to
explore fundamental dimension reduction techniques, essential for
data science researchers venturing into this domain. Of particular
focus is UMAP, currently recognized as the pinnacle of this field,
offering an expansive research landscape for topologists, geome-
ters, and mathematicians alike.

2020 Mathematics Subject Classification: 55N31, 62R40, 68T09.
Keywords and phrases: Dimension Reduction, PCA, ISOMAP, LLE,
t-SNE, UMAP.

1 Introduction

In present day technology development the use of mathematical tools
for resource optimization is crucial. The ability to implement an online

∗Université de Technologie de Troyes, France tzolkin.garduno alvarado@utt.fr,
tzolkin.garduno@gmail.com

†Departamento de Matemáticas, CINVESTAV-I.P.N. México, CDMX
fsagols@math.cinvestav.edu.mx

‡Instituto de Investigaciones Económicas UNAM / Facultad de Ingenieŕıa UNAM
gwolf@gwolf.org

§Université de Technologie de Troyes, France eddie.soulier@utt.fr
¶Université de Reims Champagne-Ardenne francis.rousseaux@univ-reims.fr

1

Morfismos, Vol. 27, No. 1, 2023, pp. 1–30

Dimension reduction algorithms and techniques

Tzolkin Garduño Alvarado∗, Feliú Sagols Troncoso†, Gunnar Wolf‡,
Eddie Soulier§, Francis Rousseaux¶

Abstract

The recent proliferation of multidimensional output models in
AI has catalyzed advancements in dimension reduction research.
While these models accommodate diverse application fields and
dimensions, the sheer multiplicity doesn’t always yield substantial
insights. Dimension reduction emerges as a pivotal process for
translating high-dimensional data into a more manageable lower-
dimensional space. Achieving this requires preserving geometric
and topological properties across both spaces. This article aims to
explore fundamental dimension reduction techniques, essential for
data science researchers venturing into this domain. Of particular
focus is UMAP, currently recognized as the pinnacle of this field,
offering an expansive research landscape for topologists, geome-
ters, and mathematicians alike.

2020 Mathematics Subject Classification: 55N31, 62R40, 68T09.
Keywords and phrases: Dimension Reduction, PCA, ISOMAP, LLE,
t-SNE, UMAP.

1 Introduction

In present day technology development the use of mathematical tools
for resource optimization is crucial. The ability to implement an online

∗Université de Technologie de Troyes, France tzolkin.garduno alvarado@utt.fr,
tzolkin.garduno@gmail.com

†Departamento de Matemáticas, CINVESTAV-I.P.N. México, CDMX
fsagols@math.cinvestav.edu.mx

‡Instituto de Investigaciones Económicas UNAM / Facultad de Ingenieŕıa UNAM
gwolf@gwolf.org

§Université de Technologie de Troyes, France eddie.soulier@utt.fr
¶Université de Reims Champagne-Ardenne francis.rousseaux@univ-reims.fr

1

Dimension Reduction Algorithms and Techniques 2

service and offer it to the target clientele in an agile and easy manner
determines the success of the business. The recent Artificial Inteligence
(AI) centered business surge has favored a wide variety of services across
markets. Thus a thorough comprehension of the diverse models and
methods used for service delivery using AI is greatly encouraged for the
data scientists that choose and implement the corresponding models.

AI has helped in advancing analysis techniques for big sets of data.
Specially in the field of Natural Language Processing (NLP), a great deal
of effort has been made to find numerical representations of language.
Generally speaking, the models used in this field transform the input
data, in either text or voice, to a numerical output, in the form of a
vector. The spaces where those vectors are found are called embedding
spaces or embeddings for short.

The reader would wonder about the reason of using embedding spaces.
The answer lies in the lack of understanding of what a numerical rep-
resentation of natural language really means. Embeddings serve many
purposes, they are used for input coding for later processing or to extract
relative similarity among the elements of the input. They are usually,
but not exclusively, high-dimensional spaces. For example, some early
Large Language Models used for NLP had 300-dimension outputs [1].
More recent models use embedding space dimension as a hyperparam-
eter [2], that is, it can be set a priori by the user. That means that
the number of dimensions of the output is a parameter that the user
is able to choose depending on their needs. This raises the question of
how to choose the optimal number of dimensions for the output, which
is an open problem to this day. One of the reasons for this is that
there is no clear qualitative interpretation for the dimensions of embed-
dings. Thus, the research in the field has stuck to grid search, heuristics
or optimization methods for determining the dimension that yields the
best results according to a given metric. In consequence, large dimen-
sion spaces have been used in hopes of better capturing semantics. The
latter poses some problems, given an apparent ever growing number of
dimensions for embeddings. One of them is the processing power needed
to analyze such kind of data, high dimension vector processing can be
overwhelming for the end-user’s computer. Additionally, increasing the
number of dimensions does not necessarily improve metric performance.
Moreover, mathematical and computer architecture considerations have
to be made, for example:

1. Curse of Dimensionality: This term, introduced by Richard

Dimension Reduction Algorithms and Techniques 3

Bellman, refers to the non-intuitive phenomena that arises when
dealing with high-dimensional data. As the dimension of a dataset
increases, the volume of the data space grows exponentially, mean-
ing the data becomes sparse. This causes many statistical and ma-
chine learning techniques to become less effective, as it’s harder to
make meaningful inferences in such sparse spaces [3].

2. Computational Cost: Processing and analyzing high-dimensional
data require a significant amount of computational resources. Al-
gorithms become slower and require more memory. Reducing di-
mensionality can make data processing and analysis more compu-
tationally efficient.

3. Avoiding Overfitting: With a large number of features relative
to observations, it’s easy for a model to overfit1 to the training
data, capturing noise and losing generalization capability. By re-
ducing dimensionality, we can eliminate redundant or non-informative
features, allowing the model to focus on the most meaningful fea-
tures and reducing the risk of overfitting.

4. Interpretability: In many contexts, working with a lower-dimensional
dataset can make results more interpretable. If the reduced di-
mensions have clear meaning, results can more easily be subject
to qualitative assessment.

5. Visualization: It’s challenging to visualize data in more than
three dimensions. By reducing a dataset’s dimensionality to two
or three components, graphical visualization can be used to ex-
plore and understand the data. Dimensionality reduction tech-
niques like t-SNE or UMAP are especially popular for visualizing
complex datasets in low-dimensional space while preserving local
structures.

The previous list is not exhaustive, it only serves as a coarse list of
the obstacles found when using high dimensional spaces. To overcome
these problems, dimension reduction techniques have been developed us-
ing a vast array of mathematical tools in the areas of geometry, statistics,

1Overfitting refers to a model that approximates the training data too well, as the
model works well with its training set, but fails to perform comparably when applied
to new, unseen data. It occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations.

Dimension Reduction Algorithms and Techniques 4

topology and optimization. These tools are used with the intention to
preserve the properties of embeddings through a process of dimension
contraction. In other words, the purpose of dimension reduction anal-
ysis is to preserve as much information as possible about a given set P
found in a high dimension space while bringing it to a space with fewer
dimensions. By information we mean a set of properties of interest that
are intrinsic to P in terms of configuration and structure. Hence, topol-
ogy plays a foundational part in dimension reduction techniques. For
that, some topological constraints are considered:

1. Preservation of Connectivity: An ideal technique should pre-
serve connectivity between points. If two points are connected in
the original space, they should remain connected in the reduced
space.

2. Preservation of Local Proximity: The local structure between
points in the original space should be mirrored in the reduced-
dimension space. That is, if two points are “close” in the high-
dimensional space, they should remain “close” in the reduced space.

3. Conservation of Cycles: If the original dataset contains cycles
or loops, a robust dimensionality reduction technique should at-
tempt to preserve these cycles in the reduced space. Homology
[4], which studies these cycles, is a powerful tool in topology, and
techniques that preserve homology classes are especially valuable.

4. Preservation of Geodesic Distance: In many applications, we
care not just about the Euclidean distance between points, but
also the geodesic distance, which considers the “path” between
points through the data structure. A good technique should try
to preserve geodesic distances between points.

5. Topological Stability: A robust dimensionality reduction tech-
nique should be resilient to small perturbations in the data. Small
perturbations in the original space shouldn’t cause significant changes
in the topological structure of the reduced space.

6. Preservation of Density: In some contexts, preserving the local
density of points can be important. That is, dense regions in the
original space should map to dense regions in the reduced space.

Dimension Reduction Algorithms and Techniques 5

Certainly, it might be difficult (or even impossible) to preserve all of
these properties simultaneously, especially when significantly reducing
dimensions. The choice of technique often involves a balance between
preserving different topological properties depending on the most rele-
vant characteristics to preserve in a specific problem. Consequently, the
field of application will determine the properties of interest.

1. Image compression: When storing or transmitting image data,
the number of pixels represents a very high dimension. JPEG com-
pression [5] works by doing dimension reduction, it transforms the
image into a lower dimensional space using Discrete Cosine Trans-
form (DCT) [6], retaining only the most important information.
This reduces the storage space of images with minimal quality loss.

2. Word embeddings: Words are represented as high dimensional
sparse vectors in a vocabulary. Word embeddings like word2vec
[1, 7] reduce their dimension by mapping words into a much lower
dimensional dense vector space, while preserving semantic rela-
tionships between words. This makes words easier to analyze.

3. Autoencoders: Autoencoders [8, 9] are neural networks which
compress the input into a lower-dimensional code and then recon-
struct the output from this code. The code is a reduced representa-
tion of the input, useful for dimensionality reduction, compression
and denoising.

4. Manifold learning: Real-world high dimensional data often lies
close to a lower dimensional manifold. Manifold learning algo-
rithms try to learn the lower dimensional representation of the data
while preserving its properties. This can lead to revealing hidden
structures [10]. Figure 1 depicts an input and corresponding out-
put example where a “rolled carpet”-like surface is represented in
a lower dimensional space.

In summary, dimension reduction is useful to simplify high dimen-
sional data into its most significative components while minimizing in-
formation loss. The subsequent uses of data in a reduced dimension
space are regression, classification, noise removal and pattern recogni-
tion among others, [11]. All of which are families of methods that are
key for AI service provision.

Dimension Reduction Algorithms and Techniques 6

Figure 1: Manifold learning example.

This works layout is the following. In Section 2 we introduce Principal
Component Analysis (PCA), which is the most frequently method used
in data science. This method seeks to project data into a lower-dimensional
subspace while preserving as much variance from the original data as
possible and is useful when variables are highly correlated. Section 3
presents the ground theory used for the Isomap (Isometric Manifold
Approximation) algorithm where the notion o�ntrinsic manifold ap-
proximation is developed along with the use of a loss function for point
adjustment assessment first introduced. The loss function is first intro-
duced in Section 3.1. Section 4 introduces the method known as Local
Linear Embedding, which locally projects the high-dimensional space
into the low-dimensional one, preserving the convex combinations of
each point concerning its nearest neighbors. In Section 5, we introduce
the Stochastic Neighbor Embedding method, which also carries out local
re-embeddings preserving the probabilistic distributions of the nearest
neighbors to each of the points in low dimensional space. In Section 6,
we introduce the technique known as UMAP (Uniform Manifold Ap-
proximation and Projection), which has been developed in some ways
from the techniques in the previous two sections but uses some topolog-
ical concepts that had never been used before. Currently, this method
is an active research area. Section 7 shows some examples of the results
obtained from all the algorithms referred in previous sections with well
known datasets. Finally, in Section 8, we present the conclusions of the
work.

Dimension Reduction Algorithms and Techniques 8

their magnitude. Those magnitudes are used to sort the eigenvectors
given eigenvalues represent the variance of P in the direction of their
corresponding eigenvector.

Lets suppose that P = (P1, ..., Pm) is a multivariate random variable
where mean(Pk) = 0 for all k. Then C = Cov(P) = 1

n

∑N
i=1 xix

T
i =

1
nP

TP is the covariance matrix of P , where xi are observations.

Lets suppose w ∈ Rm is a unit vector, then the variance of the
observations in the direction of w, or the variance of the projections of
the observations along the direction of w, is:

(1) VP (w) =
1

n

n∑
i=1

(wTxi)
2 = wTCw

The goal of PCA is to find the vector w0 for which this variance
is the highest. To achieve this, the Lagrangian multipliers method is
applied to V along with the restriction of w being a unit vector.

(2) L(w, λ) = VP (w) + λ
(
(wT · w)− 1

)
= wTCw + λ

(
(wT · w)− 1

)

where λ is the Lagrange multiplier. Then, calculating the derivative of
L with respect to w and setting it to zero we get:

(3)
∂L
∂w

= 2Cw − 2λw = 0 =⇒ Cw = λw

which means that w is an eigenvector of S and λ its corresponding
eigenvalue. Therefore, the variance of P in the direction of w is

(4) VP (w) = wTCw = λwTw = λ,

so maximizing the variance is equivalent to maximizing the eigenvalue.
Then, if we sort the eigenvalues in descending order, we will get a se-
quence of the corresponding eigenvectors sorted by variance amplitude
in the direction they represent.

It remains to choose a number l between 1 and N to project our
dataset with respect to the base obtained from w1, . . . , wl. In this man-
ner, the user can choose among the eigenvectors for the directions that
are the most relevant to the problem in hand.

Dimension Reduction Algorithms and Techniques 9

2.1 Observations

It is important to note that the ways in which the new components are
chosen will depend upon the linearly independent eigenvectors obtained
from w1, . . . , wl, those correspond to the number of different eigenvalues.
Therefore, if the number of observations n is less thanm, then the rank r
of Cov(P) is such that r < min(n,m). Yielding r different eigenvectors.
In those kind of cases, the range of l finds itself reduced.

Another issue has to do with the units of the original space axes.
Say the units of measurement change, then the coordinates of P will
change and thus the covariance matrix. This means that the eigenvectors
obtained once the units are changed will not remain the same, [14].

This method has been subject to a process of evolution and adap-
tation to many applications,[14], it plays an important role in the most
recent dimension reduction methods and is arguably one of the most
sought after methods for dimension reduction.

3 Isometric Feature Mapping

The Isometric Feature Mapping (Isomap) algorithm was first introduced
in Tenenbaum et al.’s seminal work [10]. It represents a method based
on the concept of intrinsic manifold approximation. Its main contri-
bution is the effort at maintaining the distances between points in a
lower-dimensional space as closely aligned as possible with the geodesic
distances within the intrinsic manifold itself. This innovative approach
was initially proposed as a contemporary alternative to two prevalent
methods at the time of its inception: PCA and Multidimensional Scal-
ing (MDS) as discussed in Kruskal’s influential paper [15]. These meth-
ods laid the foundational theoretical groundwork for the development of
Isomap.

3.1 Multidimensional Scaling

Back in 1964, when the MDS paper was published [16], the words loss
function were not commonly used. Regardless, the idea of setting a
function as a measure of goodness of fit for point set approximation was
well received. In this context, MDS introduced the definition of stress
as a measurement of similarity between a given set of points P and a
proposed set Q. Stress is defined as:

Dimension Reduction Algorithms and Techniques 10

S(P,Q) =

√∑
i<j(dij − d′ij)

2

∑
i<j d

2
ij

where dij is the distance between elements xi and xj of P and d′ij is the
distance between the corresponding points in Q. With stress as the loss
function, MDS proposed a point reconfiguration of the points in Q using
the method of steepest descent iteratively [16]. A key characteristic
of the stress function is that it is independent of the dimension where
P ⊂ Rm and Q ⊂ Rl are found. This raises the opportunity for point set
adjustment in multidimensional space. The initial point configuration
for Q is then chosen arbitrarily and then adjusted by optimizing stress.

Several observations can be made to the MDS algorithm. First, the
algorithm setting does not rest on any assumption of the dimension of
neither the space where P nor Q are found, that is, m and l can be equal
or different. In fact, it is pointed out that this versatility can be used
to search for the dimension in which the stress attains its minimum.
Second, the initial configuration of points for Q does not approximate
in any way the configuration of P , that is, it effectivity rests on the
assumption that stress makes up for unfortunate initial configurations
of Q. Third, the stress optimization is equivalent to a least-squares
regression. The latter method will subsequently find itself at the core of
several dimensionality reduction algorithms.

3.2 Isomap as joint MDS and PCA

It is clear that MDS already introduces an idea of topological approxi-
mation, though still diffuse given there is not an analysis per se of the
preservation of the topological properties along the optimization pro-
cess. Isomap takes MDS as a basis and adds three mathematical tools
[10], which will be further explained below:

IM1 Point connectivity graph G.

IM2 Replace geodesic distances instead of absolute distances

IM3 Calculation of initial Q configuration with PCA of P .

For Point IM1, G is the neighborhood graph built using Floyd’s
algorithm [17], where for each p ∈ P a set of neighbors is set using
either ε-proximity or the k-nearest neighbors. For Point IM2, the Floyd’s
algorithm builds the distance matrix D of G iteratively, where Dij is the

Dimension Reduction Algorithms and Techniques 11

minimum path distance between vertices qi, qj ∈ G corresponding to xi
and pj in P . On Point IM3 it calculates an embedding Q ⊂ Rl of P ,
that is, the initial configuration of the points representing P in lower
dimensional space. It does so by calculating a vector basis {yi}l1 for Rl

as yi = (
√
λ1vi1,

√
λ2vi2, ...,

√
λpvil), where vi = (vi1, vi2, ..., vil) and λi

are the eigenvectors and eigenvalues of matrix

τ(D) =
−HCH

2

where Cij = D2
ij , Hij = δij − 1

N with δij as the Kronecker delta and
N the cardinality of P . H is the centering matrix [10], a matrix with
mean zero rows and columns.

The latter aggregations of Isomap to MDS made it a widely used
tool in the first two decades of this century, in which intrinsic mani-
fold approximation gave rise to several nonlinear methods. An intrinsic
manifold M is the actual manifold where P lies within Rm, or roughly
speaking, the manifold of which P is a sample. Point IM2 is where the
hypothesis of an intrinsic manifold is found given the geodesic distances
are calculated under the assumption that they are calculated within M.

Finallly, for the optimization step, or the adjustment of Q, the cost
function of Isomap is given by

E = ‖τ(DP)− τ(DQ)‖

3.3 Observations

Isomap has several close denominations depending on the methods cho-
sen for each of its steps. For example, if the method for the initial
neighborhood graph is chosen to be ε-proximity, that is, all points of P
within an ε neighborhood of each point x ∈ P , then Isomap is called
ε−Isomap. If it is chosen as the k-nearest neighbors of x, then it is
called k−Isomap. Additionally, for the calculation of the shortest paths
between the points of P , some other algorithms can be used, for example
Dijskstra’s algorithm [17].

The Isomap paper posits that the optimization process asymptoti-
cally approaches a global optimum for the error measure E as the num-
ber of observations P increases. This claim is substantiated under the
premise that these observations, or samples, are obtained at a sufficiently
high density. In the experimental section, we will explore the perfor-
mance of Isomap on sets P characterized by ’well-behaved’ distributions

Dimension Reduction Algorithms and Techniques 12

as well as those that are not. Specifically, when P exhibits distributions
that are densely populated in certain regions but sparse in others, the
efficacy of Isomap may be surpassed by alternative algorithms.

4 Locally Linear Embedding

The Locally Linear Embedding (LLE) is a dimension reduction method
primarily used for high-dimensional data analysis. LLE leverages the
local geometric structure of the data to construct a lower-dimensional
representation that preserves this structure. We follow the explanation
provided by [18].

Let P = {xi}N1 ⊂ Rm and Q = {yi}N1 ⊂ Rl, l ≤ m, be the input
and output sets of LLE, respectively, that is Q is an embedding of P .
The LLE algorithm consists of three main steps, which are schematically
illustrated in Figure 3:

LLE1 Neighbor localization

LLE2 Local point reconstruction

LLE3 Global embedding

In Step LLE1, the k nearest neighbors for each xi in P are identified.
Then in Step LLE2, a weight matrix W = (wij) ∈ MN×N is computed
using the least squares method on the following cost function:

(5) ε(W) =

N∑
i=1

∥∥∥∥xi −
k∑

j=1

wijxj

∥∥∥∥
2

Equation 5 is also constrained to two conditions. The first one is

(6)
k∑

j=1

wij = 1

this constraint is necessary to ensure the reconstruction is invariant to
translation transformations. The second is that wij will be different
to 0 only if pj is neighbor of xi. The aim is to find the weights that
minimize the difference between each data point and the weighted sum
of its neighbors. The result is a weight matrix W = (wij) where the
local geometric structure of P is captured.

Dimension Reduction Algorithms and Techniques 14

Another advantage of LLE is that it only has one hyperparameter.
That is, it does not depend on conditions preset by the user other than
the number of neighbors k used for building the weight matrix W

The solution to the global embedding optimization problem typically
involves solving an eigenvalue problem involving W . More specifically,
the data points in the low-dimensional representation Q are precisely
the m lower eigenvectors of the quadratic form [18] induced by:

Φ(Y) =
∑
ij

Mij(yi · yj)

where Mij = δij −Wij −Wji +
∑

k WkiWkj . This means that the LLE
final embedding is found by traditional linear algebra techniques.

5 t-Stochastic Neighbor Embedding

The t-Distributed Stochastic Neighbor Embedding (t-SNE) technique
is a prominent algorithm for visualizing high-dimensional data intro-
duced by Maaten and Hinton in 2008 [19]. This method is grounded
in stochastic dimensionality reduction techniques, such as Stochastic
Neighbor Embedding (SNE), detailed in Hinton and Roweis [20]. The
latter is a member of the non-linear algorithm family and serves as a
precursor to t-SNE. As such, notable similarities are evident between
these two algorithms, therefore we should begin with a quick exploration
of SNE, before approaching t-SNE,

5.1 Stochastic Neighbor Embedding

Let P = {xi}Ni=1 be a set of points in m-dimensional space. SNE begins
by calculating the probabilities of finding points in P as seen from a
given xi. SNE, [19] supposes that distribution of the points around xi
is Gaussian, and thus sets the following equation for the conditional
probabilities for P from xi:

pj|i =

exp

(
−‖xi−xj‖2

2σ2
i

)

∑
k �=i exp

(
−‖xi−xk‖2

2σ2
i

)

Also, the value pi|i = 0 is set. Suppose now that Q = {yi}Ni=1 is the
set of points that correspond to those of P in lower dimensional space

Dimension Reduction Algorithms and Techniques 15

such that xi corresponds to yi for every i. The distributions of the points
of Q as seen from yi should not be different from the corresponding pj|i
calculated in higher dimensional space. In other words, the distributions
of P and Q should be as close as possible. In order to redistribute the
points for Q, the SNE algorithm sets the value of qj|i as a Gaussian

distribution with variance σ2 = 1√
2
:

qj|i =

exp

(
−‖yi − yj‖2

)

∑
k �=i exp

(
−‖yi − yk‖2

)

To search for the σi terms for the initial distributions pj|i of each xi,
a binary search is executed using the perplexity as a hyperparameter.
Perplexity is defined as:

Perp(Pi) = 2H(Pi)

where Pi represents the conditional probability distribution over all other
datapoints given data point xi and H(Pi) is the Shannon entropy:

H(Pi) =
∑
j

pj|i log2(pj|i)

The Shannon entropy is used to make a binary search for the values
of σi. It is important to note that the values of σi do not change over
the execution of SNE; they remain static throughout the run of the
algorithm.

The initial configuration of Q from which the gradient descent starts
is sampled from an isotropic Gaussian with small variance centered at
the origin, yielding a set ofN clumped points in lower dimensional space.

The next step in the t-SNE algorithm is to search for the optimal con-
figuration of points in Q. The latter is achieved by minimizing the sum
of the Kullbak-Leibler divergence [21], which is a measure of how one
probability distribution differs from another. In this case, the Kullbak-
Leibler divergence between points in P and Q is measured as:

C =
∑
i

∑
j

pj|i log

(
pj|i

qj|i

)

The search for the minimum is then made using the gradient descent
method, which yields vectors as follows:

Dimension Reduction Algorithms and Techniques 16

dC

dpi
= 2

∑
j

(pj|i + pi|j − qj|i − qi|j)(yi − yj)

Finally, a gradient update function is added to the optimization pro-
cess by bringing some terms to the fold:

γ(t) = γ(t−1) + η
dC

dγ
+ α(t)

(
γ(t−1) − γ(t−2)

)

These terms are the value of the gradient γ(t) at iteration t of the
optimization, η the learning rate and α(t) the momentum at iteration t.

5.2 tSNE as readapted SNE

The initial SNE setting poses the problem of the difference between
values pj|i and qj|i, where the sense is clearly determined by vector yi−yj ,
but the direction and norm are determined by the forces exerted by both
points with respect to the rest of the elements of P . To address that
problem t-SNE proposes the use of joint probabilities for the calculation
of the Kullback-Leibler entropy:

C =
∑
i

∑
j

pij log

(
pij
qij

)

where pij and qij are calculated as follows:

pij =
pj|i + pi|j

2n

qij =
(1 + ‖yi − yj‖2)−1

∑
k �=l(1 + ‖yk − yl‖2)−1

where pii = qii = 0. The latter equations help to adjust each point’s
contribution to the loss function regardless of their relative position with
respect to the rest of the points and also address the crowding problem
[19, 22, 23]. In short, the crowding problem refers to the problem that
arises when reducing the dimension for points that find themselves in a
“crowded” area, that is, that find themselves in an area that is densely
sampled. This is due to the exponential growth of volumes depending
on the dimension where they are embedded, that growth means that the
low dimensional space representation will need a greater surface for Q in
the low dimensional space. For example, sets of points that are densely

Dimension Reduction Algorithms and Techniques 17

clustered in two far apart regions will have their low dimension repre-
sentation distorted for points that are close together. Thus modeling
qij with a t-Student with one degree of freedom distribution will help
preserve the relations between clusters by means of their distances and
close points by means of their high relative probabilitie. It does so given
t-Student distribution has “heavier tails” than the Gaussian, allowing
t-SNE to be more effective in separating groups of observations.

Thus, the t-SNE provides a way to visualize high-dimensional data in
a low-dimensional space, in such a way that the neighborhood structure
of the high-dimensional data is preserved.

5.3 Observations

There are some important details of t-SNE that the developer has to
take into consideration, some of them are:

• The complexity of t-SNE is quadratic on the number of points of
P . This means that t-SNE does not scale well for large sets.

• The dimension reduction process is unclear for dimensions higher
than 3. The efficiency of the reduction to more than 3 dimensions
is measured indirectly with the assessment of the final outcome of
the total process which uses the dimension reduction method as
part of its steps.

• t-SNE does not cope well with the curse of intrinsic dimension-
ality, that stems from the assumption that the distances between
points are linear. If P belongs to a too “twisted” manifold in high
dimensionality space, the Euclidean distance used for joint proba-
bility calculation will not reflect the topological characteristics of
P in lower dimensionality space.

• The cost function is not convex, which means that the optimization
process can lead to local minima from which it won’t be able to
escape.

It should be noted that although t-SNE is widely used and can pro-
duce very intuitive visualizations, it also has some limitations. For ex-
ample, non-convex optimization means that different results can be ob-
tained each time the algorithm is run. Additionally, t-SNE does not
correctly interpret distances in low-dimensional space , even though it

Dimension Reduction Algorithms and Techniques 18

does a good job at preserving local relationships as it is designed to
preserve neighborhood relationships, not absolute distances

6 Uniform Manifold Approximation and Pro-
jection

The Uniform Manifold Approximation and Projection (UMAP) tech-
nique is a novel method for dimensionality reduction and visualization
of high-dimensional data [24]. It is particularly useful when dealing with
data that has complex structures in high dimensions, as it can capture
both the local and global structure of the data. UMAP has proven to be
a powerful tool for data visualization and analysis. It remains an active
research topic to fully understand its behavior and properties and how it
can be best tailored for different data types and tasks. For this reason,
it is advisable for specialists in topology and geometry to be involved in
related tasks. Additionally, UMAP is remarkably efficient in computa-
tional terms. It can handle both large and high-dimensional datasets. Its
Python implementation umap-learn is compatible with scikit-learn,
facilitating its practical use in machine learning pipelines [25].

UMAP is based on the idea of functorial optimization over fuzzy
topological representations (seen as categories) of a high dimensional
space set of points. This is, a series of optimization trials has to be
performed over the space of reduced dimension representations of the
input until the best representation is found. A full explanation of the
concepts on which UMAP is built goes beyond the scope of this text,
thus referral to the cited sources is advised.

The UMAP algorithm is composed by the three following steps [24],
which are further explained subsequently:

1. Setting local fuzzy simplicial sets

2. Spectral embedding

3. Low dimensional optimization

Step 1 is pivotal in selecting an appropriate family of open cov-
ers that are homotopically equivalent. This requires ensuring that the
chosen open covers are capable of morphing continuously among them-
selves. To facilitate this, Step 2 introduces a fuzzy approach. This
method is particularly beneficial as it aids in effectively representing the

Dimension Reduction Algorithms and Techniques 19

distribution of open sets within our chosen open cover. The most crit-
ical phase is Step 3, where the low-dimensional representation of the
input set is determined. This is accomplished through the implementa-
tion of stochastic gradient descent, utilizing cross-entropy on the fuzzy
sets as the loss function. The process is further refined by the applica-
tion of a differentiable functor between open covers, enabling continuous
variation. While some intricate details are omitted in this overview, it
provides a comprehensive guideline for the enthusiastic reader.

6.1 Setting local fuzzy simplicial sets

The algorithm starts by identifying an effective method to build an
open cover, which is instrumental in extracting topological information.
Given that our primary focus is on point-based sets, it is essential to
preserve neighbor relationships in high dimensional space as accurate as
possible when transforming to lower-dimensional space. The aim is not
merely to redistribute the points of P uniformly across their space, but
rather to reinterpret the distances between these points in a way that
effectively warps the space, creating an illusion of uniform distribution.
The connectivity formed among the elements of this open cover will
serve as the foundation for constructing simplicial sets 2.

An initial step involves defining the characteristics of the open cover.
Key preliminary considerations include ensuring that the open cover is
specifically constructed for the input set P . Also, that it accurately re-
flects the set’s topological properties and is flexible enough to be trans-
formed into similar open covers.

For addressing the first requirement, UMAP selects open neighbor-
hoods Ni for each pi ∈ P , with the radius determined as the smallest
radius that encompasses the first k neighbors. It is crucial to note that
k is a hyperparameter predetermined by the user. For every pi ∈ P and
its first k-neighbors {qi,j}kj=1, distances are calculated as follows:

di,j =
max(0, dist(pi, qi,j)− νi)

σi

2A simplicial set X is a collection of sets X0, X1, X2, . . . together with maps
δi : Xn → Xn−1 and si : Xn → Xn+1, 0 ≤ i ≤ n, that fullfill the degeneracy
and face operators conditions respectively. In other words, a simplicial set is a cate-
gorical model capturing those topological spaces that can be built up from simplices.
Simplices can be viewed as generalizations of triangles for any dimension, [26].

Dimension Reduction Algorithms and Techniques 20

Figure 4: To the left, the open cover obtained using the fuzzy distance.
To the right the simplicial complex of the 1-simplices from sets si.

where νi is the distance to the nearest neighbor of pi, and σi is a smooth-
ing term defined such that:

k∑
j=1

exp

(
di,j
σi

)
= log2(n)

These distances introduce a fuzzy local distance for each pi and are
used as weights for the simplicial set S = {si}ni=1, where every simplex
si = {([pi, qi,j], exp(−di,j))}kj=1 intersects at least another one. This
property will be used to establish the initial embedding for P . A graphi-
cal representation of the fuzzy open sets and the corresponding simplicial
set can be found in Figure 4.

6.2 Spectral embedding

Upon completing the step just described, S constitutes a 1−skeleton,
meaning the simplices si are confined to dimension of at most 1. The
subsequent phase involves the construction of an initial embedding, em-
ploying spectral embedding techniques on S. This approach presup-

Dimension Reduction Algorithms and Techniques 21

poses that S is embedded within a low-dimensional manifold in a higher-
dimensional space, it aims at minimizing the expected squared distance
between connected nodes. To achieve this, the weighted adjacency ma-
trix A is calculated as

A = B +BT −B ◦BT

where B is the weighted adjacency matrix of the directed graph G ob-
tained from S and ◦ is elementwise multiplication. In this sense, A
becomes a symmetric matrix used to compute the sorted eigenvectors of

L = D
1
2 (D −A)D

1
2

where D is the degree matrix and D − A the Laplacian matrix. The
sorted eigenvectors are then used for calculating the initial coordinates
for each pi.

The choice of A is due to the differences on the weights between
si = ([pi, qi,j], exp(−di,j)) and sl = ([pl, ql,m], exp(−dl,m)) where pi =
ql,m and pl = qi,j , yet their distances or weights differ, i.e., exp(−di,j) �=
exp(−dl,m). In this scenario, UMAP replaces both si and sj with a
single simplex s = ([pi, pl], exp(−di,j) + exp(−di,j) − exp(−di,j − di,j))
on matrix A. This modification in distance measurement is the spectral
representation of the points in P . The resulting set of simplices is de-
signed to preserve the local topological properties of its low-dimensional
representation. The ensuing step involves adjusting the low-dimensional
representation T of S, derived from the spectral embedding, in accor-
dance with a specific loss function.

6.3 Low dimensional optimization

The next step on the algorithm consists of varying the distances or
weights of the elements of T in order to find the best choice of distances
in lower dimensional space within certain constraints. These constraints
come in the form of hyperparameters for the general optimization pro-
cess. The first step is to determine the function to be optimized, that
is, the loss function. In the case of UMAP, cross entropy has been used
given its resemblance to force-directed layout algorithms. The cross
entropy function in question is the following:

∑
s∈S′

(
wh(s) log

(
wh(s)

wl(s)

)
−

(
1− wh(s)

)
log

(
1− wh(s)

1− wl(s)

))

Dimension Reduction Algorithms and Techniques 22

Where wh and wl are the weights in higher and lower dimensionality
spaces respectively. The starting point of the optimization is the spectral
embedding T made in the previous section. Then stochastic gradient
descent is used in n epochs.

In the preceding formula, the first term is expected to reflect an
attractive force. That is, whenever wl is bigger than wh, the whole term
reduces the entropy. An analogous analysis could be made to the second
term, which provides a repulsive force to the equation. In consequence,
the optimization process will search for an equilibrium between these
two forces.

6.4 Some observations on UMAP

It is important to consider that there are several free parameters that
will certainly make a difference on the results yielded by UMAP. Those
are:

1. k: The number of neighbors for calculating S.

2. d: The target embedding dimension.

3. min− dist: The desired separation between close points of P , the
original coordinates.

4. n: The number of epochs used on the optimization.

The foundational theory that justifies the validity of the process lies
within category theory. In brief, the optimization process is searching
the best representation for S′ within a space of categories representing
the Cech complex of S′, which is also the skeleton and the 1-simplex
structureThat makes all the elements of the category homotopically
equivalent, according to the Nerve theorem [27]. In other words, the
optimization process operates as a functor joining categories in its do-
main and codomain which correspond to the original embedding space,
or high dimensionality space, and the lower dimensionality space.

No mention has been made when talking about the sampling used
on the optimization process. Also, the final point distribution on the
display followed by UMAP is the product of attraction and repulsion
forces in the cross entropy function.

Dimension Reduction Algorithms and Techniques 25

8 Conclusions

Throughout this work, we presented several important works on dimen-
sion reduction that strongly contribute to recent technological develop-
ments. The algorithms described in this compendium are historically
significant in that they present the general theory and mixed techniques
that are the state of the art. The choice of the technique will always
depend on the characteristics of each problem, available resources and
the business model. Therefore, there is not a best choice or one-solution-
fits-all technique, this will be determined by the use case in specific fields
of application.

The field of dimension reduction research is closely related to AI,
hence its recent surge. Nevertheless, dimension reduction is not the
only contribution of these algorithms, one could argue that manifold
approximation methods developed for embedding the input point set
play a fundamental role in these algorithms. The quality of the initial
manifold approximation is what yields a good final interpretation of the
problem at hand.

There is also an elephant in the room that we have not mentioned
and that is the choice of hyper-parameters for each of the previously
presented algorithms. The value of which plays a determinant role on
the results obtained. Hyperparameters are mainly set by an optimiza-
tion process chosen from a wide variety of methods available in the
literature. This process composes itself with the analogous step of the
embedding model. That is, the input data has to be modeled in at least
two steps: 1) AI model hyperparameter optimization, 2) dimension re-
duction hyperparameter optimization. Each of these steps go through
an optimization process that makes some field specialists weary of the
trustworthiness of the results because of the apparent difference when
changing hyperparameter values.

Finally, we found that PCA has proven to be an almost unavoidable
method for feature selection. The theoretical justifications of PCA make
it a building block for other methods. In particular, the combination of
PCA and spectral analysis extends the reach of manifold approximation
methods. This is due the ease of representation of the vicinities of
the points of the input set. We think that the dimension reduction
algorithms developed in the near future will use spectral analysis along
with PCA as the basis for manifold approximation methods, given the
granularity it allows to achieve.

Dimension Reduction Algorithms and Techniques 26

Acronyms used

AI Artificial Inteligence . 2

Isomap Isometric Feature Mapping 9

LLE Locally Linear Embedding 12

MDS Multidimensional Scaling 9

NLP Natural Language Processing 2

PCA Principal Component Analysis 6

SNE Stochastic Neighbor Embedding 14

t-SNE t-Distributed Stochastic Neighbor Embedding 14

UMAP Uniform Manifold Approximation and Projection 18

References

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. In Proceed-
ings of the International Conference on Learning Representations
(ICLR), 2013.

[2] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A
survey of transformers. AI Open, 3:111–132, 2022.

[3] Richard Bellman. Adaptive control processes: a guided tour. Prince-
ton University Press, 1961.

[4] Allen Hatcher. Algebraic topology. Cambridge University Press,
Cambridge, UK, 2002.

Dimension Reduction Algorithms and Techniques 27

[5] Gregory K Wallace. The jpeg still picture compression stan-
dard. IEEE transactions on consumer electronics, 38(1):xviii–
xxxiv, 1992.

[6] Nasir Ahmed, T Natarajan, and K. R. Rao. Discrete cosine trans-
form. IEEE Transactions on Computers, C-23(1):90–93, 1974.

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jef-
frey Dean. Distributed representations of words and phrases and
their compositionality. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 3111–3119, 2013.

[8] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the di-
mensionality of data with neural networks. science, 313(5786):504–
507, 2006.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016.

[10] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A
Global Geometric Framework for Nonlinear Dimensionality Reduc-
tion. Science, 290(5500):2319–2323, December 2000.

[11] Hervé Abdi and Lynne J Williams. Principal component anal-
ysis. Wiley Interdisciplinary Reviews: Computational Statistics,
2(4):433–459, 2010.

[12] Markus Ringnér. What is principal component analysis? Nature
biotechnology, 26(3):303–304, 2008.

[13] Ian Jolliffe and Jorge Cadima. Principal Component Analysis.
Springer, 2016.

[14] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a
review and recent developments. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
374(2065):20150202, April 2016.

[15] J. B. Kruskal. Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, March
1964.

[16] J. B. Kruskal. Nonmetric multidimensional scaling: A numerical
method. Psychometrika, 29(2):115–129, June 1964.

Dimension Reduction Algorithms and Techniques 28

[17] Thomas Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to algorithms. MIT press, Cambridge
(Mass.), 2nd. ed edition, 2001.

[18] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290(5500):2323–
2326, 2000.

[19] Laurens van der Maaten and Geoffrey Hinton. Visualizing data
using t-sne. Journal of Machine Learning Research, 9(Nov):2579–
2605, 2008.

[20] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embed-
ding. Advances in Neural Information Processing Systems, 15:857–
864, 2002.

[21] Solomon Kullback. Information Theory and Statistics. Dover Pub-
lications, 1959.

[22] James Cook, Ilya Sutskever, Andriy Mnih, and Geoffrey Hinton. Vi-
sualizing similarity data with a mixture of maps. InArtificial intelli-
gence and statistics, pages 67–74. Proceedings of Machine Learning
Research, 2007.

[23] Kilian Q. Weinberger and Lawrence K. Saul. Unsupervised Learn-
ing of Image Manifolds by Semidefinite Programming. International
Journal of Computer Vision, 70(1):77–90, October 2006.

[24] Leland McInnes, John Healy, and James Melville. Umap: Uniform
manifold approximation and projection for dimension reduction.
arXiv preprint arXiv:1802.03426, 2018.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. the Journal of machine Learning research,
12:2825–2830, 2011.

[26] W.G. Dwyer and J. Spalinski. Chapter 2 - homotopy theories and
model categories. In I.M. JAMES, editor, Handbook of Algebraic
Topology, pages 73–126. North-Holland, Amsterdam, 1995.

[27] Jon Peter May. Simplicial objects in algebraic topology. Chicago
lectures in mathematics. Univ. of Chicago Pr, Chicago, 1992.

29

[28] Multiple contributors. Sklearn Datasets Swiss Roll.

[29] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algo-
rithms. 2017. Publisher: arXiv Version Number: 2.

[30] Keras.

[31] Anirudha Ghosh, Abu Sufian, Farhana Sultana, Amlan
Chakrabarti, and Debashis De. Fundamental Concepts of
Convolutional Neural Network. In Valentina E. Balas, Raghvendra
Kumar, and Rajshree Srivastava, editors, Recent Trends and
Advances in Artificial Intelligence and Internet of Things, volume
172, pages 519–567. Springer International Publishing, Cham,
2020. Series Title: Intelligent Systems Reference Library.

Appendices

A Neural network architecture

This is a description of the architecture used to generate the embedding
for the Fashion MNIST [29] labeled dataset described in section 7. The
code was written using Python programming language along with the
Keras library [30]. The architecture chosen for this particular exam-
ple is a sequential convolutional neural network [31] with the following
features:

• Input convolutional layer with 32 filters size 3 × 3 and relu acti-
vation.

• Convolutional layer with 64 filters of size 3×3 and relu activation.

• Max pooling layer with 3× 3 window size.

• Convolutional layer with 32 filters of size 3×3 and relu activation.

• Max pooling layer with 3× 3 window size.

• Flatten layer.

• Dense layer with 4096 units and relu activation.

30

• Dropout layer of 0.5.

• Dense layer with 10 units and softmax activation.

The loss function chosen for the training was categorical cross-entropy
using the Adadelta optimizer [30] and accuracy was chosen for the final
assessment. Additionally, 50 epochs were performed with batches of size
32.

It is important to point out that the neural network architecture
chosen is a typical convolutional neural network.

	v27n1jun2023.pdf

